The Atmospheric Infrared Sounder Version 6 cloud products

Abstract. The version 6 cloud products of the Atmospheric Infrared Sounder (AIRS) and Advanced Microwave Sounding Unit (AMSU) instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field-of-view (FOV) resolution. Significant improvements in cloud height assignment over version 5 are shown with FOV-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP). Cloud thermodynamic phase (ice, liquid, and unknown phase), ice cloud effective diameter (De), and ice cloud optical thickness (τ) are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal variability of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over portions of the diurnal and annual cycles, and capture variability within the mesoscale and synoptic scales at all latitudes.

[1]  Shaima L. Nasiri,et al.  Evaluation of AIRS Cloud-Thermodynamic-Phase Determination with CALIPSO , 2014 .

[2]  Todd D. Ringler,et al.  Observed Scaling in Clouds and Precipitation and Scale Incognizance in Regional to Global Atmospheric Models , 2013 .

[3]  H. Chepfer,et al.  Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel , 2013 .

[4]  Steven Platnick,et al.  Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model , 2013 .

[5]  Qing Yue,et al.  Retrieval of Cirrus Cloud Properties From the Atmospheric Infrared Sounder: The K-Coefficient Approach Using Cloud-Cleared Radiances as Input , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Andrew K. Heidinger,et al.  PATMOS-x: Results from a Diurnally Corrected 30-yr Satellite Cloud Climatology , 2013 .

[7]  Andrew Gettelman,et al.  Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5 , 2012 .

[8]  Patrick C. Taylor,et al.  Tropical Outgoing Longwave Radiation and Longwave Cloud Forcing Diurnal Cycles from CERES , 2012 .

[9]  A. Bodas‐Salcedo,et al.  The Surface Downwelling Solar Radiation Surplus over the Southern Ocean in the Met Office Model: The Role of Midlatitude Cyclone Clouds , 2012 .

[10]  K. Trenberth,et al.  A Less Cloudy Future: The Role of Subtropical Subsidence in Climate Sensitivity , 2012, Science.

[11]  H. Jin Satellite Remote Sensing of Mid-level Clouds , 2012 .

[12]  Simon J. Hook,et al.  A radiance‐based method for estimating uncertainties in the Atmospheric Infrared Sounder (AIRS) land surface temperature product , 2012 .

[13]  Andrew Gettelman,et al.  Climate impacts of ice nucleation , 2012 .

[14]  William L. Smith,et al.  Dual-Regression Retrieval Algorithm for Real-Time Processing of Satellite Ultraspectral Radiances , 2012 .

[15]  Robert Pincus,et al.  Exposing Global Cloud Biases in the Community Atmosphere Model (CAM) Using Satellite Observations and Their Corresponding Instrument Simulators , 2012 .

[16]  C. Naud,et al.  Observational Analysis of Cloud and Precipitation in Midlatitude Cyclones: Northern versus Southern Hemisphere Warm Fronts , 2012 .

[17]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[18]  Yongxiang Hu,et al.  Impact of a cloud thermodynamic phase parameterization based on CALIPSO observations on climate simulation , 2012 .

[19]  J. Quaas Evaluating the “critical relative humidity” as a measure of subgrid‐scale variability of humidity in general circulation model cloud cover parameterizations using satellite data , 2012 .

[20]  Christopher D. Barnet,et al.  Hyperspectral Earth Observation from IASI: Five Years of Accomplishments , 2012 .

[21]  R. Armante,et al.  Bulk microphysical properties of semi-transparent cirrus from AIRS: a six year global climatology and statistical analysis in synergy with geometrical profiling data from CloudSat-CALIPSO , 2012 .

[22]  Robert Pincus,et al.  Reconciling Simulated and Observed Views of Clouds: MODIS, ISCCP, and the Limits of Instrument Simulators in Climate Models , 2011 .

[23]  G. Tselioudis,et al.  Changes in extratropical storm track cloudiness 1983–2008: observational support for a poleward shift , 2011, Climate Dynamics.

[24]  Stephen A. Klein,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part I: Cloud Radiative Kernels , 2012 .

[25]  B. Baum,et al.  Impacts of subpixel cloud heterogeneity on infrared thermodynamic phase assessment , 2011 .

[26]  Johannes Hendricks,et al.  Effects of ice nuclei on cirrus clouds in a global climate model , 2011 .

[27]  Robert Wood,et al.  The Distribution of Cloud Horizontal Sizes , 2011 .

[28]  Hiroshi Murakami,et al.  The recent state of the climate: Driving components of cloud‐type variability , 2011 .

[29]  Richard A. Frey,et al.  Comparing MODIS and AIRS Infrared-Based Cloud Retrievals , 2011 .

[30]  Riyaj Shamsudeen Do Not Use , 2011 .

[31]  Athanasios Nenes,et al.  Sensitivity of the global distribution of cirrus ice crystal concentration to heterogeneous freezing , 2010 .

[32]  Chang‐Hoi Ho,et al.  Observational diagnosis of cloud phase in the winter Antarctic atmosphere for parameterizations in climate models , 2010 .

[33]  U. Lohmann,et al.  Influence of a future climate on the microphysical and optical properties of orographic cirrus clouds in ECHAM5 , 2010 .

[34]  S. Klein,et al.  Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the Community Atmosphere Model , 2010 .

[35]  H. Treut,et al.  THE CALIPSO MISSION: A Global 3D View of Aerosols and Clouds , 2010 .

[36]  C. Jakob,et al.  The variability of tropical ice cloud properties as a function of the large-scale context from ground-based radar-lidar observations over Darwin, Australia , 2010 .

[37]  Claudia J. Stubenrauch,et al.  A 6-year global cloud climatology from the Atmospheric InfraRed Sounder AIRS and a statistical analysis in synergy with CALIPSO and CloudSat , 2010 .

[38]  J. Norris,et al.  Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity , 2010 .

[39]  Tianle Yuan,et al.  General Macro- and Microphysical Properties of Deep Convective Clouds as Observed by MODIS , 2010 .

[40]  M. Bauer,et al.  Cloud Vertical Distribution across Warm and Cold Fronts in CloudSat–CALIPSO Data and a General Circulation Model , 2010 .

[41]  Yongxiang Hu,et al.  Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements , 2010 .

[42]  K. Trenberth,et al.  Simulation of Present-Day and Twenty-First-Century Energy Budgets of the Southern Oceans , 2010 .

[43]  K. Stamnes,et al.  CALIPSO/CALIOP Cloud Phase Discrimination Algorithm , 2009 .

[44]  Simon J. Hook,et al.  Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari deserts , 2009 .

[45]  Hiroaki Miura,et al.  Diurnal Cycle of Precipitation in the Tropics Simulated in a Global Cloud-Resolving Model , 2009 .

[46]  T. Schneider,et al.  WATER VAPOR AND THE DYNAMICS OF CLIMATE CHANGES , 2009, 0908.4410.

[47]  J. Penner,et al.  Cirrus clouds in a global climate model with a statistical cirrus cloud scheme , 2009 .

[48]  Robert Burgman,et al.  Observational and Model Evidence for Positive Low-Level Cloud Feedback , 2009, Science.

[49]  Michael J. Pavolonis,et al.  Gazing at Cirrus Clouds for 25 Years through a Split Window. Part I: Methodology , 2009 .

[50]  Q. Fu,et al.  Hadley Cell Widening: Model Simulations versus Observations , 2009 .

[51]  Richard C. J. Somerville,et al.  Assessing the Diurnal Cycle of Precipitation in a Multi‐Scale Climate Model , 2009 .

[52]  Sungsu Park,et al.  Intercomparison of model simulations of mixed‐phase clouds observed during the ARM Mixed‐Phase Arctic Cloud Experiment. I: single‐layer cloud , 2009 .

[53]  Kuo-Nan Liou,et al.  Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra , 2009 .

[54]  A. Slingo,et al.  Trends in Observed Cloudiness and Earth’s Radiation Budget , 2009 .

[55]  Dong Liu,et al.  Cirrus clouds and deep convection in the tropics: Insights from CALIPSO and CloudSat , 2009 .

[56]  R. Charlson,et al.  Trends in Observed Cloudiness and Earth's Radiation Budget: What Do We Not Know and What Do We Need to Know? , 2009 .

[57]  Derek J. Posselt,et al.  Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm , 2008 .

[58]  R. Neale,et al.  Midlatitude Cyclone Compositing to Constrain Climate Model Behavior Using Satellite Observations , 2008 .

[59]  L. Schulman Influence of the future , 2008 .

[60]  Brian H. Kahn,et al.  Limitations of Bispectral Infrared Cloud Phase Determination and Potential for Improvement , 2008 .

[61]  U. Lohmann,et al.  Aerosol Influence on Mixed-Phase Clouds in CAM-Oslo , 2008 .

[62]  C. Bretherton,et al.  Aquaplanets, Climate Sensitivity, and Low Clouds , 2008 .

[63]  S. Klein,et al.  On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework , 2008 .

[64]  K. Bowman,et al.  Implementation of cloud retrievals for TES atmospheric retrievals: 2. Characterization of cloud top pressure and effective optical depth retrievals , 2008 .

[65]  Michael Pieper,et al.  Neural Network Estimation of Atmospheric Profiles Using AIRS/IASI/AMSU Data in the Presence of Clouds , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[66]  Steven A. Ackerman,et al.  Cloud Detection with MODIS. Part II: Validation , 2008 .

[67]  K. Sassen,et al.  Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements , 2008 .

[68]  Simone Tanelli,et al.  CloudSat mission: Performance and early science after the first year of operation , 2008 .

[69]  Joel Susskind,et al.  Improved surface parameter retrievals using AIRS/AMSU data , 2008, SPIE Defense + Commercial Sensing.

[70]  J. Qian,et al.  Why Precipitation Is Mostly Concentrated over Islands in the Maritime Continent , 2008 .

[71]  Eva Borbas,et al.  Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements , 2008 .

[72]  Andrew Gettelman,et al.  Tropical thin cirrus and relative humidity observed by the Atmospheric Infrared Sounder , 2007 .

[73]  Steven Platnick,et al.  High Cloud Properties from Three Years of MODIS Terra and Aqua Collection-4 Data over the Tropics , 2007 .

[74]  Bryan A. Baum,et al.  Cloud thermodynamic phase inferred from merged POLDER and MODIS data , 2007 .

[75]  Moustafa T. Chahine,et al.  Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount , 2007 .

[76]  Steven Platnick,et al.  Differences Between Collection 4 and 5 MODIS Ice Cloud Optical/Microphysical Products and Their Impact on Radiative Forcing Simulations , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[77]  Bo-Cai Gao,et al.  Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 data , 2007 .

[78]  Bryan A. Baum,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm 1 , 2007 .

[79]  Annmarie Eldering,et al.  Toward the characterization of upper tropospheric clouds using Atmospheric Infrared Sounder and Microwave Limb Sounder observations , 2007 .

[80]  G. Tselioudis,et al.  GCM intercomparison of global cloud regimes: present-day evaluation and climate change response , 2007 .

[81]  Tristan L'Ecuyer,et al.  Performance assessment of a five‐channel estimation‐based ice cloud retrieval scheme for use over the global oceans , 2007 .

[82]  A. Evan,et al.  Arguments against a physical long‐term trend in global ISCCP cloud amounts , 2007 .

[83]  P. Field,et al.  Precipitation and Cloud Structure in Midlatitude Cyclones , 2007 .

[84]  Bjorn Lambrigtsen,et al.  AIRS / AMSU / HSB Version 7 Changes from Version 6 , 2007 .

[85]  K. Bowman,et al.  Implementation of cloud retrievals for Tropospheric Emission Spectrometer (TES) atmospheric retrievals: part 1. Description and characterization of errors on trace gas retrievals , 2006 .

[86]  Claudia J. Stubenrauch,et al.  Cloud Properties and Their Seasonal and Diurnal Variability from TOVS Path-B , 2006 .

[87]  Michael D. King,et al.  Comparison of near‐infrared and thermal infrared cloud phase detections , 2006 .

[88]  Eric J. Fetzer,et al.  Modulation of the diurnal cycle of tropical deep convective clouds by the MJO , 2006 .

[89]  A. Dai Precipitation Characteristics in Eighteen Coupled Climate Models , 2006 .

[90]  Lennart Bengtsson,et al.  Storm Tracks and Climate Change , 2006 .

[91]  M. Bauer,et al.  Observational Constraints on the Cloud Thermodynamic Phase in Midlatitude Storms , 2006 .

[92]  William L. Smith,et al.  AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. , 2006 .

[93]  L. Larrabee Strow,et al.  Validation of the Atmospheric Infrared Sounder radiative transfer algorithm , 2006 .

[94]  Christopher D. Barnet,et al.  Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover , 2006 .

[95]  Reinhard Beer,et al.  Tropospheric emission spectrometer: retrieval method and error analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[96]  Yoko Tsushima,et al.  Importance of the mixed-phase cloud distribution in the control climate for assessing the response of clouds to carbon dioxide increase: a multi-model study , 2006 .

[97]  William B. Rossow,et al.  Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures , 2005 .

[98]  S. Bony,et al.  Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models , 2005 .

[99]  S. Bony,et al.  Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements , 2005 .

[100]  D. Jackson,et al.  Trends in Global Cloud Cover in Two Decades of HIRS Observations , 2005 .

[101]  William L. Smith,et al.  A principal component-based radiative transfer forward model (PCRTM) for hyperspectral instruments , 2005, SPIE Asia-Pacific Remote Sensing.

[102]  William L. Smith,et al.  A principal component noise filter for high spectral resolution infrared measurements , 2004 .

[103]  C. Stubenrauch,et al.  Correlations between microphysical properties of large-scale semi-transparent cirrus and the state of the atmosphere , 2004 .

[104]  Steven Platnick,et al.  Retrieval of semitransparent ice cloud optical thickness from atmospheric infrared sounder (AIRS) measurements , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[105]  B. Soden,et al.  Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model , 2004 .

[106]  Robin J. Hogan,et al.  Estimate of the global distribution of stratiform supercooled liquid water clouds using the LITE lidar , 2004 .

[107]  E. Zipser,et al.  The Diurnal Cycle of Rainfall and Convective Intensity according to Three Years of TRMM Measurements , 2003 .

[108]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[109]  Christopher D. Barnet,et al.  Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds , 2003, IEEE Trans. Geosci. Remote. Sens..

[110]  William L. Smith,et al.  AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[111]  R. Neale,et al.  The Maritime Continent and Its Role in the Global Climate: A GCM Study , 2003 .

[112]  J. Slingo,et al.  The Diurnal Cycle in the Tropics , 2001 .

[113]  Hung-Lung Huang,et al.  Application of Principal Component Analysis to High-Resolution Infrared Measurement Compression and Retrieval , 2001 .

[114]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[115]  W. Rossow,et al.  Advances in understanding clouds from ISCCP , 1999 .

[116]  S. Klein,et al.  Validation and Sensitivities of Frontal Clouds Simulated by the ECMWF Model , 1999 .

[117]  Robert A. Houze,et al.  Diurnal variation and life‐cycle of deep convective systems over the tropical pacific warm pool , 1997 .

[118]  Brian Cairns,et al.  Diurnal variations of cloud from ISCCP data , 1995 .

[119]  N. Lau,et al.  A Satellite View of the Synoptic-Scale Organization of Cloud Properties in Midlatitude and Tropical Circulation Systems , 1995 .

[120]  Judith A. Curry,et al.  Annual Cycle of Radiation Fluxes over the Arctic Ocean: Sensitivity to Cloud Optical Properties , 1992 .

[121]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[122]  Eric A. Smith,et al.  ISCCP Cloud Algorithm Intercomparison. , 1985 .