Correntropy: Implications of nonGaussianity for the moment expansion and deconvolution
暂无分享,去创建一个
Andrew T. Walden | Emma J. McCoy | Z. Yang | A. Walden | E. McCoy | Z. Yang
[1] Weifeng Liu,et al. A unifying criterion for instantaneous blind source separation based on correntropy , 2007, Signal Process..
[2] D. Garling,et al. Inequalities: A Journey into Linear Analysis , 2007 .
[3] Stphane Mallat,et al. A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way , 2008 .
[4] Bruno O. Shubert,et al. Random variables and stochastic processes , 1979 .
[5] C. L. Mallows,et al. Linear processes are nearly Gaussian , 1967 .
[6] João Marcos Travassos Romano,et al. An Analysis of Unsupervised Signal Processing Methods in the Context of Correlated Sources , 2009, ICA.
[7] J. Kahane. Propriétés locales des fonctions à séries de Fourier aléatoires , 1960 .
[8] D. Brillinger. Time series - data analysis and theory , 1981, Classics in applied mathematics.
[9] John G. Proakis,et al. Probability, random variables and stochastic processes , 1985, IEEE Trans. Acoust. Speech Signal Process..
[10] José Carlos Príncipe,et al. Generalized correlation function: definition, properties, and application to blind equalization , 2006, IEEE Transactions on Signal Processing.
[11] Kenneth Binmore. Mathematical Analysis: , 2018, How to Fall Slower Than Gravity.
[12] Tien-Chung Hu,et al. Sub-Gaussian Techniques in Proving Strong Laws of Large Numbers , 1987 .
[13] Weifeng Liu,et al. Correntropy: Properties and Applications in Non-Gaussian Signal Processing , 2007, IEEE Transactions on Signal Processing.
[14] Terrence J. Sejnowski,et al. Independent Component Analysis for Mixed Sub- Gaussian and Super- Gaussian Sources , 1999 .
[15] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[16] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[17] R. Dingle. Asymptotic expansions : their derivation and interpretation , 1975 .
[18] A. T. Walden,et al. A comparison of stochastic gradient and minimum entropy deconvolution algorithms , 1988 .
[19] B. L. Joiner,et al. Some Properties of the Range in Samples from Tukey's Symmetric Lambda Distributions , 1971 .
[20] Weifeng Liu,et al. The correntropy MACE filter , 2009, Pattern Recognit..
[21] Bede Liu,et al. Generation of a random sequence having a jointly specified marginal distribution and autocovariance , 1982 .
[22] S. Mallat. A wavelet tour of signal processing , 1998 .
[23] Y.-H. Kwon,et al. Blind separation for mixtures of sub-Gaussian and super-Gaussian sources , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).
[24] V. V. Buldygin,et al. Sub-Gaussian random variables , 1980 .
[25] José Carlos Príncipe,et al. Correntropy as a Novel Measure for Nonlinearity Tests , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.
[26] A. Benveniste,et al. Robust identification of a nonminimum phase system: Blind adjustment of a linear equalizer in data communications , 1980 .
[27] Milton Abramowitz,et al. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .
[28] K. Kreutz-Delgado,et al. A GENERAL FRAMEWORK FOR COMPONENT ESTIMATION , 2003 .
[29] T. Apostol. Mathematical Analysis , 1957 .