The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles

The fractional alternating-current Josephson effect produces a series of steps in the current–voltage characteristics of a superconducting junction driven at radiofrequencies. This unusual phenomenon is now observed in a semiconductor–superconductor nanowire. What is more, a doubling in step size when a strong magnetic field is applied could be a possible signature of Majorana fermions, particles that are their own antiparticle.

[1]  K. Likharev,et al.  Dynamics of Josephson Junctions and Circuits , 1986 .

[2]  K. T. Law,et al.  Majorana fermion induced resonant Andreev reflection. , 2009, Physical review letters.

[3]  Unconventional Josephson signatures of Majorana bound states. , 2011, Physical review letters.

[4]  F. Hassler,et al.  Dynamical detection of Majorana fermions in current-biased nanowires , 2012, 1202.0642.

[5]  A. F. Andreev THERMAL CONDUCTIVITY OF THE INTERMEDIATE STATE OF SUPERCONDUCTORS. PART II , 1964 .

[6]  K. West,et al.  Observation of a one-dimensional spin–orbit gap in a quantum wire , 2009, 0911.4311.

[7]  A. Potter,et al.  Multichannel generalization of Kitaev's Majorana end states and a practical route to realize them in thin films. , 2010, Physical review letters.

[8]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[9]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[10]  Konstantin K. Likharev,et al.  Superconducting weak links , 1979 .

[11]  C. L. Yu,et al.  Observation of Majorana Fermions in a Nb-InSb Nanowire-Nb Hybrid Quantum Device , 2012, 1204.4130.

[12]  Ettore Majorana Teoria simmetrica dell’elettrone e del positrone , 1937 .

[13]  P. Dirac The quantum theory of the electron , 1928 .

[14]  S. Sarma,et al.  Experimental and materials considerations for the topological superconducting state in electron and hole doped semiconductors: searching for non-Abelian Majorana modes in 1D nanowires and 2D heterostructures , 2011, 1111.2054.

[15]  S. Sarma,et al.  Majorana Fermions in Semiconductor Nanowires , 2011, 1106.3078.

[16]  S Das Sarma,et al.  Generic new platform for topological quantum computation using semiconductor heterostructures. , 2009, Physical review letters.

[17]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[18]  S. Sarma,et al.  Proposal to stabilize and detect half-quantum vortices in strontium ruthenate thin films: Non-Abelian braiding statistics of vortices in a p x + i p y superconductor , 2005, cond-mat/0510553.

[19]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[20]  R. Aguado,et al.  ac Josephson effect in finite-length nanowire junctions with Majorana modes. , 2011, Physical review letters.

[21]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[22]  L N Pfeiffer,et al.  Spontaneous spin polarization in quantum point contacts. , 2006, Physical review letters.

[23]  S. Das Sarma,et al.  Search for Majorana fermions in multiband semiconducting nanowires. , 2010, Physical review letters.

[24]  S. Shapiro JOSEPHSON CURRENTS IN SUPERCONDUCTING TUNNELING: THE EFFECT OF MICROWAVES AND OTHER OBSERVATIONS , 1963 .

[25]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[26]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[27]  S. Sarma,et al.  Non-Abelian quantum order in spin-orbit-coupled semiconductors: Search for topological Majorana particles in solid-state systems , 2010, 1006.2829.

[28]  Jason Alicea,et al.  Majorana fermions in a tunable semiconductor device , 2009, 0912.2115.

[29]  F. Wilczek Majorana returns , 2009 .

[30]  Michael Tinkham,et al.  Introduction to Superconductivity , 1975 .

[31]  Midgap edge states and pairing symmetry of quasi-one-dimensional organic superconductors , 2000, cond-mat/0010206.

[32]  M. Kastner,et al.  Kondo effect in a single-electron transistor , 1997, Nature.

[33]  C. Beenakker,et al.  Quantized conductance at the Majorana phase transition in a disordered superconducting wire. , 2010, Physical review letters.

[34]  Guang-Yao Huang,et al.  Anomalous zero-bias conductance peak in a Nb-InSb nanowire-Nb hybrid device. , 2012, Nano letters.

[35]  C. Kane,et al.  Josephson current and noise at a superconductor/quantum-spin-Hall-insulator/superconductor junction , 2008, 0804.4469.

[36]  Fractional ac Josephson effect in p- and d-wave superconductors , 2002, cond-mat/0210148.

[37]  E. Bakkers,et al.  Tunable Supercurrent Through Semiconductor Nanowires , 2005, Science.

[38]  Y. Nazarov,et al.  Phenomenology and dynamics of a Majorana Josephson junction , 2011, 1112.6368.

[39]  L. Fu,et al.  Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator , 2009 .

[40]  N. Wingreen,et al.  Low-temperature fate of the 0.7 structure in a point contact: a Kondo-like correlated state in an open system. , 2002, Physical review letters.

[41]  P. Recher,et al.  Unpaired Majorana fermions in quantum wires , 2001 .

[42]  E. Majorana,et al.  A Symmetric Theory of Electrons and Positrons(Il Nuovo Cimento 14(1937)171-184〔原著はイタリア語〕) , 1981 .