SOME STUDIES ON THE OPTIMIZATION OF VARIABLE THICKNESS PLATES AND SHELLS

The optimization of variable thickness plates and shells is studied. In particular, three types of shell are considered: hyperbolic paraboloid, conoid and cylindrical shell. The main objective is to investigate the optimal thickness distributions as the geometric form of the structure changes from a plate to a deep shell. The optimal thickness distribution is found by use of a structural optimization algorithm which integrates the Coons patch technique for thickness definition, structural analysis using 9‐node Huang‐Hinton shell elements, sensitivity evaluation using the global finite difference method and the sequential quadratic programming method. The composition of the strain energy is monitored during the optimization process to obtain insight into the energy distribution for the optimum structures. Several benchmark examples are considered illustrating optimal thickness variations under different loading, boundary and design variable linking conditions.