Plasmon-Enhanced Light Absorption in GaAs Nanowire Array Solar Cells

In this paper, we propose a plasmon-enhanced solar cell structure based on a GaAs nanowire array decorated with metal nanoparticles. The results show that by engineering the metallic nanoparticles, localized surface plasmon could be excited, which can concentrate the incident light and propagate the energy to nanowires. The surface plasmon can dramatically enhance the absorbance of near-bandgap light, and the enhancement is influenced by the size and material of nanoparticles. By optimizing the particle parameters, a large absorbance enhancement of 50 % at 760 nm and a high conversion efficiency of 14.5 % can be obtained at a low diameter and period ratio (D/P ratio) of 0.3. The structure is promising for low-cost high-performance nanoscale solar cells.

[1]  Albert Polman,et al.  Tunable light trapping for solar cells using localized surface plasmons , 2009 .

[2]  X. Ren,et al.  Axially connected nanowire core-shell p-n junctions: a composite structure for high-efficiency solar cells , 2015, Nanoscale Research Letters.

[3]  Daniel Derkacs,et al.  Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles , 2006 .

[4]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[5]  Dennis G. Hall,et al.  Island size effects in nanoparticle-enhanced photodetectors , 1998 .

[6]  Daniel Derkacs,et al.  Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles , 2007 .

[7]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[8]  J. Hauser,et al.  Electron and hole mobilities in silicon as a function of concentration and temperature , 1982, IEEE Transactions on Electron Devices.

[9]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[10]  E. Yu,et al.  Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles , 2005 .

[11]  Michael S. Shur,et al.  Handbook Series on Semiconductor Parameters, Vol. 2: Ternary and Quaternary Iii-V Compounds , 1999 .

[12]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[13]  Maria Losurdo,et al.  Enhanced absorption in Au nanoparticles/a-Si:H/c-Si heterojunction solar cells exploiting Au surface plasmon resonance , 2009 .

[14]  Zhiming M. Wang,et al.  Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars , 2015 .

[15]  M. Green,et al.  Surface plasmon enhanced silicon solar cells , 2007 .

[16]  Shanhui Fan,et al.  Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings , 2010 .

[17]  Dennis G. Hall,et al.  Absorption enhancement in silicon‐on‐insulator waveguides using metal island films , 1996 .

[18]  Jin-A Jeong,et al.  Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells , 2009 .

[19]  Dieter Meissner,et al.  Metal cluster enhanced organic solar cells , 2000 .

[20]  Tristan L. Temple,et al.  Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells , 2009 .

[21]  Long Wen,et al.  Analysis of optical absorption in GaAs nanowire arrays , 2011, Nanoscale research letters.

[22]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.