Rigorous Numerics for ill-posed PDEs: Periodic Orbits in the Boussinesq Equation

In this paper, we develop computer-assisted techniques for the analysis of periodic orbits of ill-posed partial differential equations. As a case study, our proposed method is applied to the Boussinesq equation, which has been investigated extensively because of its role in the theory of shallow water waves. The idea is to use the symmetry of the solutions and a Newton–Kantorovich type argument (the radii polynomial approach) to obtain rigorous proofs of existence of the periodic orbits in a weighted ℓ1 Banach space of space-time Fourier coefficients with exponential decay. We present several computer-assisted proofs of the existence of periodic orbits at different parameter values.

[1]  Hans Koch,et al.  Integration of Dissipative Partial Differential Equations: A Case Study , 2010, SIAM J. Appl. Dyn. Syst..

[2]  Walter Craig,et al.  An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .

[3]  J. G. Heywood,et al.  A Numerically Based Existence Theorem for the Navier-Stokes Equations , 1999 .

[4]  D. Salamon Morse theory, the Conley index and Floer homology , 1990 .

[5]  Jean-Philippe Lessard,et al.  Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation , 2011, Numerische Mathematik.

[6]  Konstantin Mischaikow,et al.  Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square , 2008 .

[7]  Yoshitaka Watanabe,et al.  A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh–Bénard problems , 2009, Numerische Mathematik.

[8]  J. M. Sanz-Serna,et al.  Soliton and antisoliton interactions in the ‘‘good’’ Boussinesq equation , 1988 .

[9]  Konstantin Mischaikow,et al.  Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..

[10]  Annalisa Crannell,et al.  The Existence of Many Periodic Non-travelling Solutions to the Boussinesq Equation , 1996 .

[11]  Jean-Philippe Lessard,et al.  Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .

[12]  Konstantin Mischaikow,et al.  Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..

[13]  Jean-Philippe Lessard,et al.  Computational fixed-point theory for differential delay equations with multiple time lags , 2012 .

[14]  Michael Plum,et al.  Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof , 2000 .

[15]  P. J. McKenna,et al.  A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam , 2006 .

[16]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[17]  R. Llave A Smooth Center Manifold Theorem which Applies to Some Ill-Posed Partial Differential Equations with Unbounded Nonlinearities , 2009 .

[18]  Rafael de la Llave,et al.  A Framework for the Numerical Computation and A Posteriori Verification of Invariant Objects of Evolution Equations , 2016, SIAM J. Appl. Dyn. Syst..

[19]  P. Zgliczynski,et al.  Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs , 2010 .

[20]  J. F. Williams,et al.  Validation of the bifurcation diagram in the 2D Ohta–Kawasaki problem , 2017 .

[21]  Jean-Philippe Lessard,et al.  Stationary Coexistence of Hexagons and Rolls via Rigorous Computations , 2015, SIAM J. Appl. Dyn. Syst..

[22]  Vladimir E. Zakharov,et al.  On stochastization of one-dimensional chains of nonlinear oscillators , 1974 .

[23]  A. Floer Symplectic fixed points and holomorphic spheres , 1989 .

[24]  Piotr Zgliczynski,et al.  Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..

[25]  Carlos Tomei,et al.  Inverse scattering and the boussinesq equation , 1982 .

[26]  Kouji Hashimoto,et al.  Verified numerical computation of solutions for the stationary Navier-Stokes equation in nonconvex polygonal domains , 2007 .

[27]  Siegfried M. Rump,et al.  Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.

[28]  中尾 充宏 Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .

[29]  Holger Teismann,et al.  Rigorous numerics for NLS: bound states, spectra, and controllability , 2013, 1310.6531.

[30]  Jean-Philippe Lessard,et al.  Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach , 2015, Math. Comput..

[31]  Jean-Philippe Lessard,et al.  Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates , 2013, SIAM J. Numer. Anal..

[32]  J. Lessard Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation , 2009, 0909.4107.

[33]  William D. Kalies,et al.  Rigorous Computation of the Global Dynamics of Integrodifference Equations with Smooth Nonlinearities , 2013, SIAM J. Numer. Anal..

[34]  Konstantin Mischaikow,et al.  A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..

[35]  Konstantin Mischaikow,et al.  Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..

[36]  Siegfried M. Rump,et al.  INTLAB - INTerval LABoratory , 1998, SCAN.

[37]  Jean-Philippe Lessard,et al.  A Posteriori Verification of Invariant Objects of Evolution Equations: Periodic Orbits in the Kuramoto-Sivashinsky PDE , 2017, SIAM J. Appl. Dyn. Syst..

[38]  Jason D. Mireles-James,et al.  Connecting Orbits for Compact Infinite Dimensional Maps: Computer Assisted Proofs of Existence , 2016, SIAM J. Appl. Dyn. Syst..

[39]  Gianni Arioli,et al.  Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto–Sivashinski Equation , 2010 .

[40]  V. G. Makhankov,et al.  Dynamics of classical solitons (in non-integrable systems) , 1978 .

[41]  Mitsuhiro T. Nakao,et al.  A numerical verification method for a periodic solution of a delay differential equation , 2010, J. Comput. Appl. Math..

[42]  Konstantin Mischaikow,et al.  Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..

[43]  R. Castelli Rigorous Computation of Non-uniform Patterns for the 2-Dimensional Gray-Scott Reaction-Diffusion Equation , 2017 .

[44]  P. Zgliczy'nski,et al.  Rigorous numerics for PDEs with indefinite tail: existence of a periodic solution of the Boussinesq equation with time-dependent forcing , 2015, 1504.04535.