Rigorous Numerics for ill-posed PDEs: Periodic Orbits in the Boussinesq Equation
暂无分享,去创建一个
[1] Hans Koch,et al. Integration of Dissipative Partial Differential Equations: A Case Study , 2010, SIAM J. Appl. Dyn. Syst..
[2] Walter Craig,et al. An existence theory for water waves and the boussinesq and korteweg-devries scaling limits , 1985 .
[3] J. G. Heywood,et al. A Numerically Based Existence Theorem for the Navier-Stokes Equations , 1999 .
[4] D. Salamon. Morse theory, the Conley index and Floer homology , 1990 .
[5] Jean-Philippe Lessard,et al. Rigorous computation of smooth branches of equilibria for the three dimensional Cahn–Hilliard equation , 2011, Numerische Mathematik.
[6] Konstantin Mischaikow,et al. Rigorous Numerics for the Cahn-Hilliard Equation on the Unit Square , 2008 .
[7] Yoshitaka Watanabe,et al. A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh–Bénard problems , 2009, Numerische Mathematik.
[8] J. M. Sanz-Serna,et al. Soliton and antisoliton interactions in the ‘‘good’’ Boussinesq equation , 1988 .
[9] Konstantin Mischaikow,et al. Rigorous Numerics for Global Dynamics: A Study of the Swift-Hohenberg Equation , 2005, SIAM J. Appl. Dyn. Syst..
[10] Annalisa Crannell,et al. The Existence of Many Periodic Non-travelling Solutions to the Boussinesq Equation , 1996 .
[11] Jean-Philippe Lessard,et al. Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs , 2010 .
[12] Konstantin Mischaikow,et al. Validated Continuation for Equilibria of PDEs , 2007, SIAM J. Numer. Anal..
[13] Jean-Philippe Lessard,et al. Computational fixed-point theory for differential delay equations with multiple time lags , 2012 .
[14] Michael Plum,et al. Multiple solutions for a semilinear boundary value problem: a computational multiplicity proof , 2000 .
[15] P. J. McKenna,et al. A computer-assisted existence and multiplicity proof for travelling waves in a nonlinearly supported beam , 2006 .
[16] G. Whitham,et al. Linear and Nonlinear Waves , 1976 .
[17] R. Llave. A Smooth Center Manifold Theorem which Applies to Some Ill-Posed Partial Differential Equations with Unbounded Nonlinearities , 2009 .
[18] Rafael de la Llave,et al. A Framework for the Numerical Computation and A Posteriori Verification of Invariant Objects of Evolution Equations , 2016, SIAM J. Appl. Dyn. Syst..
[19] P. Zgliczynski,et al. Rigorous numerics for dissipative PDEs III. An effective algorithm for rigorous integration of dissipative PDEs , 2010 .
[20] J. F. Williams,et al. Validation of the bifurcation diagram in the 2D Ohta–Kawasaki problem , 2017 .
[21] Jean-Philippe Lessard,et al. Stationary Coexistence of Hexagons and Rolls via Rigorous Computations , 2015, SIAM J. Appl. Dyn. Syst..
[22] Vladimir E. Zakharov,et al. On stochastization of one-dimensional chains of nonlinear oscillators , 1974 .
[23] A. Floer. Symplectic fixed points and holomorphic spheres , 1989 .
[24] Piotr Zgliczynski,et al. Rigorous Numerics for Dissipative Partial Differential Equations II. Periodic Orbit for the Kuramoto–Sivashinsky PDE—A Computer-Assisted Proof , 2004, Found. Comput. Math..
[25] Carlos Tomei,et al. Inverse scattering and the boussinesq equation , 1982 .
[26] Kouji Hashimoto,et al. Verified numerical computation of solutions for the stationary Navier-Stokes equation in nonconvex polygonal domains , 2007 .
[27] Siegfried M. Rump,et al. Verification methods: rigorous results using floating-point arithmetic , 2010, Acta Numerica.
[28] 中尾 充宏. Numerical Verification Methods for Solutions of Ordinary and Partial Differential Equations (数学解析の理論的展開の計算機上での遂行可能性) , 2000 .
[29] Holger Teismann,et al. Rigorous numerics for NLS: bound states, spectra, and controllability , 2013, 1310.6531.
[30] Jean-Philippe Lessard,et al. Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach , 2015, Math. Comput..
[31] Jean-Philippe Lessard,et al. Efficient Rigorous Numerics for Higher-Dimensional PDEs via One-Dimensional Estimates , 2013, SIAM J. Numer. Anal..
[32] J. Lessard. Recent advances about the uniqueness of the slowly oscillating periodic solutions of Wright's equation , 2009, 0909.4107.
[33] William D. Kalies,et al. Rigorous Computation of the Global Dynamics of Integrodifference Equations with Smooth Nonlinearities , 2013, SIAM J. Numer. Anal..
[34] Konstantin Mischaikow,et al. A Rigorous Numerical Method for the Global Analysis of Infinite-Dimensional Discrete Dynamical Systems , 2004, SIAM J. Appl. Dyn. Syst..
[35] Konstantin Mischaikow,et al. Rigorous Numerics for Symmetric Connecting Orbits: Even Homoclinics of the Gray-Scott Equation , 2011, SIAM J. Math. Anal..
[36] Siegfried M. Rump,et al. INTLAB - INTerval LABoratory , 1998, SCAN.
[37] Jean-Philippe Lessard,et al. A Posteriori Verification of Invariant Objects of Evolution Equations: Periodic Orbits in the Kuramoto-Sivashinsky PDE , 2017, SIAM J. Appl. Dyn. Syst..
[38] Jason D. Mireles-James,et al. Connecting Orbits for Compact Infinite Dimensional Maps: Computer Assisted Proofs of Existence , 2016, SIAM J. Appl. Dyn. Syst..
[39] Gianni Arioli,et al. Computer-Assisted Methods for the Study of Stationary Solutions in Dissipative Systems, Applied to the Kuramoto–Sivashinski Equation , 2010 .
[40] V. G. Makhankov,et al. Dynamics of classical solitons (in non-integrable systems) , 1978 .
[41] Mitsuhiro T. Nakao,et al. A numerical verification method for a periodic solution of a delay differential equation , 2010, J. Comput. Appl. Math..
[42] Konstantin Mischaikow,et al. Rigorous Numerics for Partial Differential Equations: The Kuramoto—Sivashinsky Equation , 2001, Found. Comput. Math..
[43] R. Castelli. Rigorous Computation of Non-uniform Patterns for the 2-Dimensional Gray-Scott Reaction-Diffusion Equation , 2017 .
[44] P. Zgliczy'nski,et al. Rigorous numerics for PDEs with indefinite tail: existence of a periodic solution of the Boussinesq equation with time-dependent forcing , 2015, 1504.04535.