Dealing with interactivity between bi-polar multiple criteria preferences in outranking methods

In this paper we introduce the modelling of specific interactions between criteria expressing positive and negative preferences considered as reasons in favor and reasons against the comprehensive preferences. We can call this method the bi-polar approach to MCDA. In order to take into account, specific interactions between criteria in this context, especially the power of the opposing criteria, multiple criteria positive and negative preferences are aggregated using the bi-polar Choquet integral. The bi-polar approach is applied to the two most well-known classes of outranking methods: ELECTRE and PROMETHEE. The final result is a new way to deal with the outranking approach, which permits to take into account some very important preferential information which could not be modelled before by the existing MCDA methodologies. Our approach is related with most of the current advanced research subjects in MCDA and more specifically with the following domains: outranking approach, fuzzy integral approach, four-valued logic approach, non-additive and nontransitive models of conjoint measurement, non-compensatory preference structures, interpretation of the importance of criteria, methods for assessing the non-additive weights, and the aggregation functions.

[1]  M. Grabisch,et al.  Bi-capacities for decision making on bipolar scales , 2002 .

[2]  Jean Simos L"évaluation environnementale , 1989 .

[3]  Carlos A. Bana e Costa,et al.  Applications of the MACBETH Approach in the Framework of an Additive Aggregation Model , 1997 .

[4]  Bernard Roy,et al.  Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure , 2002, Eur. J. Oper. Res..

[5]  Luis C. Dias,et al.  Resolving inconsistencies among constraints on the parameters of an MCDA model , 2003, Eur. J. Oper. Res..

[6]  C. B. E. Costa,et al.  MACBETH — An Interactive Path Towards the Construction of Cardinal Value Functions , 1994 .

[7]  B. Roy,et al.  A Theoretical Framework for Analysing the Notion of Relative Importance of Criteria , 1996 .

[8]  A. Tsoukiàs,et al.  From Concordance / Discordance to the Modelling of Positive and Negative Reasons in Decision Aiding , 2002 .

[9]  Bernard Roy,et al.  Aide multicritère à la décision : méthodes et cas , 1993 .

[10]  P. Vincke,et al.  Note-A Preference Ranking Organisation Method: The PROMETHEE Method for Multiple Criteria Decision-Making , 1985 .

[11]  Patrice Perny,et al.  Non-transitive decomposable conjoint measurement as a general framework for MCDM and decision under uncertainty , 2000 .

[12]  Roman Słowiński,et al.  Preference Representation by Means of Conjoint Measurement and Decision Rule Model , 2002 .

[13]  C. Dellacherie Quelques Commentaires Sur Les Prolongements De Cafacites , 1971 .

[14]  Eric Jacquet-Lagrèze,et al.  Binary preference indices: A new look on multicriteria aggregation procedures , 1982 .

[15]  J. R. FERNÁNDEZ,et al.  BICOOPERATIVE GAMES , 2000 .

[16]  S. Greco Bipolar Sugeno and Choquet integrals , 2002 .

[17]  Alexis Tsoukiàs,et al.  On the continuous extension of a four valued logic for preference modelling , 1998 .

[18]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[19]  A. Tsoukiàs,et al.  A new axiomatic foundation of partial comparability , 1995 .

[20]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[21]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[22]  Peter C. Fishburn,et al.  Noncompensatory preferences , 2004, Synthese.

[23]  Jean-Luc Marichal,et al.  Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..

[24]  B. Roy The outranking approach and the foundations of electre methods , 1991 .

[25]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[26]  D. Schmeidler Integral representation without additivity , 1986 .

[27]  Christophe Labreuche,et al.  Fuzzy Measures and Integrals in MCDA , 2004 .

[28]  G. Choquet Theory of capacities , 1954 .

[29]  J. Šipoš,et al.  Integral with respect to a pre-measure , 1979 .

[30]  Philippe Fortemps,et al.  A Graded Quadrivalent Logic for Ordinal Preference Modelling: Loyola–Like Approach , 2002, Fuzzy Optim. Decis. Mak..

[31]  Philippe Vincke,et al.  Multicriteria Decision-aid , 1993 .