The First Habitable-zone Earth-sized Planet from TESS. III. Climate States and Characterization Prospects for TOI-700 d

We present self-consistent three-dimensional climate simulations of possible habitable states for the newly discovered Habitable Zone Earth-sized planet, TOI-700 d. We explore a variety of atmospheric compositions, pressures, and rotation states for both ocean-covered and completely desiccated planets in order to assess the planet's potential for habitability. For all 20 of our simulated cases, we use our climate model outputs to synthesize transmission spectra, combined-light spectra, and integrated broadband phase curves. These climatologically-informed observables will help the community assess the technological capabilities necessary for future characterization of this planet - as well as similar transiting planets discovered in the future - and will provide a guide for distinguishing possible climate states if one day we do obtain sensitive spectral observations of a habitable planet around a M-star. We find that TOI-700 d is a strong candidate for a habitable world and can potentially maintain temperate surface conditions under a wide variety of atmospheric compositions. Unfortunately, the spectral feature depths from the resulting transmission spectra and the peak flux and variations from our synthesized phase curves for TOI-700 d do not exceed 10 ppm. This will likely prohibit the James Webb Space Telescope (JWST) from characterizing its atmosphere; however, this motivates the community to invest in future instrumentation that perhaps can one day reveal the true nature of TOI-700 d, and to continue to search for similar planets around less distant stars.

[1]  S. H. Dole Habitable Planets for Man , 1964 .

[2]  D. Hunten The Escape of Light Gases from Planetary Atmospheres , 1973 .

[3]  D. Gough Solar interior structure and luminosity variations , 1981 .

[4]  A. Watson,et al.  The dynamics of a rapidly escaping atmosphere: Applications to the evolution of Earth and Venus , 1981 .

[5]  J. Kasting,et al.  Effects of high CO2 levels on surface temperature and atmospheric oxidation state of the early Earth , 1984, Journal of atmospheric chemistry.

[6]  A. Borysow,et al.  Collision-induced rototranslational absorption spectra of N2-N2 pairs for temperatures from 50 to 300 K. [Of Titan atmosphere] , 1986 .

[7]  A. Borysow,et al.  Theoretical Collision-induced Rototranslational Absorption Spectra for Modeling Titan's Atmosphere: H 2--N 2 Pairs , 1986 .

[8]  J. Kasting,et al.  The case for a wet, warm climate on early Mars. , 1987, Icarus.

[9]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[10]  Shian‐Jiann Lin,et al.  Multidimensional Flux-Form Semi-Lagrangian Transport Schemes , 1996 .

[11]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[12]  E. Guinan,et al.  Atmospheric Loss of Exoplanets Resulting from Stellar X-Ray and Extreme-Ultraviolet Heating , 2003 .

[13]  Roger V. Yelle,et al.  Aeronomy of extra-solar giant planets at small orbital distances , 2003 .

[14]  Christopher P McKay,et al.  Haze aerosols in the atmosphere of early Earth: manna from heaven. , 2004, Astrobiology.

[15]  Usa,et al.  SUBMITTED TO APJ Preprint typeset using L ATEX style emulateapj EVOLUTION OF THE SOLAR ACTIVITY OVER TIME AND EFFECTS ON PLANETARY ATMOSPHERES: I. HIGH-ENERGY IRRADIANCES (1–1700 A) , 2004 .

[16]  Victoria Meadows,et al.  Biosignatures from Earth-like planets around M dwarfs. , 2005, Astrobiology.

[17]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[18]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[19]  S. Bony,et al.  The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection , 2006 .

[20]  J. Kasting,et al.  M stars as targets for terrestrial exoplanet searches and biosignature detection. , 2007, Astrobiology.

[21]  X. Delfosse,et al.  Habitable planets around the star Gliese 581 , 2007, 0710.5294.

[22]  P. Chylek,et al.  Considerations for the habitable zone of super-Earth planets in Gliese 581 , 2007, 0709.1476.

[23]  John Kielkopf,et al.  K-H2 quasi-molecular absorption detected in the T-dwarf ε Indi Ba , 2007, 0709.1192.

[24]  W. von Bloh,et al.  The habitability of super-Earths in Gliese 581 , 2007, 0705.3758.

[25]  D. Queloz,et al.  The HARPS search for southern extra-solar planets. XI. Super-Earths (5 and 8 M{⊕}) in a 3-planet system , 2007, 0704.3841.

[26]  “Hot Jupiters” , 2006 .

[27]  F. Tian THERMAL ESCAPE FROM SUPER EARTH ATMOSPHERES IN THE HABITABLE ZONES OF M STARS , 2009 .

[28]  T. Lenton,et al.  Nitrogen-enhanced greenhouse warming on early Earth , 2009 .

[29]  Arnold Hanslmeier,et al.  The CoRoT space mission : early results Special feature Determining the mass loss limit for close-in exoplanets : what can we learn from transit observations ? , 2009 .

[30]  D. Schrag,et al.  Radiative transfer in CO2‐rich paleoatmospheres , 2009 .

[31]  Kjetil Dohlen,et al.  EPICS: direct imaging of exoplanets with the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[32]  Norman H Sleep,et al.  Habitable zone limits for dry planets. , 2011, Astrobiology.

[33]  Jean-Baptiste Madeleine,et al.  GLIESE 581D IS THE FIRST DISCOVERED TERRESTRIAL-MASS EXOPLANET IN THE HABITABLE ZONE , 2011, 1105.1031.

[34]  A. Belu,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - II. Characterizing airless planets , 2011, 1110.3087.

[35]  P. McGovern,et al.  The effects of deep water cycling on planetary thermal evolution , 2011 .

[36]  Franck Selsis,et al.  Thermal phase curves of nontransiting terrestrial exoplanets - I. Characterizing atmospheres , 2011, 1104.4763.

[37]  V. Makarov How terrestrial planets traverse spin-orbit resonances: A camel goes through a needle's eye , 2011, 1110.2658.

[38]  R. Haberle,et al.  Suppression of the water ice and snow albedo feedback on planets orbiting red dwarf stars and the subsequent widening of the habitable zone. , 2011, Astrobiology.

[39]  J. Owen,et al.  Planetary evaporation by UV and X‐ray radiation: basic hydrodynamics , 2012, 1206.2367.

[40]  V. Makarov CONDITIONS OF PASSAGE AND ENTRAPMENT OF TERRESTRIAL PLANETS IN SPIN-ORBIT RESONANCES , 2012 .

[41]  Arnold Hanslmeier,et al.  XUV-exposed, non-hydrostatic hydrogen-rich upper atmospheres of terrestrial planets. Part I: atmospheric expansion and thermal escape. , 2012, Astrobiology.

[42]  O. Toon,et al.  Hospitable archean climates simulated by a general circulation model. , 2013, Astrobiology.

[43]  R. Sander,et al.  The MPI-Mainz UV/VIS Spectral Atlas of Gaseous Molecules of Atmospheric Interest , 2013 .

[44]  S. Massie,et al.  HITRAN 2012 refractive indices , 2013 .

[45]  Yongyun Hu,et al.  Role of ocean heat transport in climates of tidally locked exoplanets around M dwarf stars , 2013, Proceedings of the National Academy of Sciences.

[46]  F. Selsis,et al.  The dependence of the ice-albedo feedback on atmospheric properties. , 2013, Astrobiology.

[47]  Aomawa L. Shields,et al.  The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets. , 2013, Astrobiology.

[48]  J. Head,et al.  Global modelling of the early Martian climate under a denser CO2 atmosphere: Water cycle and ice evolution , 2012, 1207.3993.

[49]  H. Lammer,et al.  Probing the blow-off criteria of hydrogen-rich 'super-Earths' , 2012, 1210.0793.

[50]  Francis Codron,et al.  Exploring the faint young Sun problem and the possible climates of the Archean Earth with a 3‐D GCM , 2013, 1310.4286.

[51]  Ryan C. Terrien,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[52]  R. Pierrehumbert,et al.  WATER LOSS FROM TERRESTRIAL PLANETS WITH CO2-RICH ATMOSPHERES , 2013, 1306.3266.

[53]  R. Haberle,et al.  3D modelling of the early Martian Climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. , 2012, 1210.4216.

[54]  Dorian S. Abbot,et al.  STABILIZING CLOUD FEEDBACK DRAMATICALLY EXPANDS THE HABITABLE ZONE OF TIDALLY LOCKED PLANETS , 2013, 1307.0515.

[55]  H. Rauer,et al.  E P ] 22 A pr 2 01 3 N 2-associated surface warming on early Mars , 2014 .

[56]  Dorian S. Abbot,et al.  Deciphering thermal phase curves of dry, tidally locked terrestrial planets , 2014 .

[57]  C. Goldblatt,et al.  Diminished greenhouse warming from Archean methane due to solar absorption lines , 2014 .

[58]  J. Fortney,et al.  UNDERSTANDING THE MASS–RADIUS RELATION FOR SUB-NEPTUNES: RADIUS AS A PROXY FOR COMPOSITION , 2013, 1311.0329.

[59]  Stephen R. Kane,et al.  ON THE FREQUENCY OF POTENTIAL VENUS ANALOGS FROM KEPLER DATA , 2014, 1409.2886.

[60]  D. Bercovici,et al.  On the thermal and magnetic histories of Earth and Venus: Influences of melting, radioactivity, and conductivity , 2014 .

[61]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[62]  D. Abbot,et al.  WATER CYCLING BETWEEN OCEAN AND MANTLE: SUPER-EARTHS NEED NOT BE WATERWORLDS , 2014, 1401.0720.

[63]  C. Goldblatt,et al.  Radiative forcing at high concentrations of well‐mixed greenhouse gases , 2014 .

[64]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[65]  Arpita Roy,et al.  Stellar activity masquerading as planets in the habitable zone of the M dwarf Gliese 581 , 2014, Science.

[66]  Robin Wordsworth,et al.  ABIOTIC OXYGEN-DOMINATED ATMOSPHERES ON TERRESTRIAL HABITABLE ZONE PLANETS , 2014, 1403.2713.

[67]  Owen B. Toon,et al.  Delayed onset of runaway and moist greenhouse climates for Earth , 2014 .

[68]  Dorian S. Abbot,et al.  STRONG DEPENDENCE OF THE INNER EDGE OF THE HABITABLE ZONE ON PLANETARY ROTATION RATE , 2014, 1404.4992.

[69]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[70]  R. Luger,et al.  Extreme water loss and abiotic O2 buildup on planets throughout the habitable zones of M dwarfs. , 2014, Astrobiology.

[71]  Feng Tian,et al.  History of water loss and atmospheric O2 buildup on rocky exoplanets near M dwarfs , 2015 .

[72]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[73]  L. Decin,et al.  Connecting the dots – II. Phase changes in the climate dynamics of tidally locked terrestrial exoplanets , 2015, 1508.00419.

[74]  K. Zahnle,et al.  RAPID WATER LOSS CAN EXTEND THE LIFETIME OF PLANETARY HABITABILITY , 2015, 1509.03746.

[75]  D. Sasselov,et al.  THE PERSISTENCE OF OCEANS ON EARTH-LIKE PLANETS: INSIGHTS FROM THE DEEP-WATER CYCLE , 2015, 1501.00735.

[76]  Kyle L. Luther,et al.  CHARACTERIZING TRANSITING EXOPLANET ATMOSPHERES WITH JWST , 2015, 1511.05528.

[77]  Shawn Domagal-Goldman,et al.  DETECTING AND CONSTRAINING N2 ABUNDANCES IN PLANETARY ATMOSPHERES USING COLLISIONAL PAIRS , 2015, 1507.07945.

[78]  Owen B. Toon,et al.  The evolution of habitable climates under the brightening Sun , 2015 .

[79]  Y. Longval,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, III: MIRIM, The MIRI Imager , 2015, 1508.02488.

[80]  Suvrath Mahadevan,et al.  THE INNER EDGE OF THE HABITABLE ZONE FOR SYNCHRONOUSLY ROTATING PLANETS AROUND LOW-MASS STARS USING GENERAL CIRCULATION MODELS , 2016, 1602.05176.

[81]  Giada Arney,et al.  The Pale Orange Dot: The Spectrum and Habitability of Hazy Archean Earth , 2016, Astrobiology.

[82]  R. Wordsworth The Climate of Early Mars , 2016, 1606.02813.

[83]  D. Abbot,et al.  EFFECT OF SURFACE-MANTLE WATER EXCHANGE PARAMETERIZATIONS ON EXOPLANET OCEAN DEPTHS , 2016, The Astrophysical journal.

[84]  Ignasi Ribas,et al.  The habitability of Proxima Centauri b II. Possible climates and Observability , 2016, 1608.06827.

[85]  D. Kipping,et al.  PROBABILISTIC FORECASTING OF THE MASSES AND RADII OF OTHER WORLDS , 2016, 1603.08614.

[86]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[87]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[88]  S. Mohanty,et al.  Habitability of terrestrial-mass planets in the HZ of M Dwarfs – I. H/He-dominated atmospheres , 2016, 1601.05143.

[89]  Maxwell Kelley,et al.  Was Venus the First Habitable World of our Solar System? , 2016, Geophysical research letters.

[90]  D. Abbot,et al.  DIFFERENCES IN WATER VAPOR RADIATIVE TRANSFER AMONG 1D MODELS CAN SIGNIFICANTLY AFFECT THE INNER EDGE OF THE HABITABLE ZONE , 2016, 1809.01397.

[91]  Drake Deming,et al.  Pale Orange Dots: The Impact of Organic Haze on the Habitability and Detectability of Earthlike Exoplanets , 2016, 1702.02994.

[92]  M. Way,et al.  Resolving Orbital and Climate Keys of Earth and Extraterrestrial Environments with Dynamics (ROCKE-3D) 1.0: A General Circulation Model for Simulating the Climates of Rocky Planets , 2017, 1701.02360.

[93]  Jade H. Checlair,et al.  No Snowball on Habitable Tidally Locked Planets , 2017, 1705.08904.

[94]  Kevin Heng,et al.  Habitable Moist Atmospheres on Terrestrial Planets near the Inner Edge of the Habitable Zone around M Dwarfs , 2017, 1705.10362.

[95]  James E. Owen,et al.  The Evaporation Valley in the Kepler Planets , 2017, 1705.10810.

[96]  M. Joshi,et al.  Demarcating Circulation Regimes of Synchronously Rotating Terrestrial Planets within the Habitable Zone , 2017, 1710.00435.

[97]  É. Bolmont,et al.  Water loss from terrestrial planets orbiting ultracool dwarfs: implications for the planets of TRAPPIST-1 , 2016, 1605.00616.

[98]  R. Haberle,et al.  The Early Mars Climate System , 2017 .

[99]  A. D. Del Genio,et al.  NIR-driven Moist Upper Atmospheres of Synchronously Rotating Temperate Terrestrial Exoplanets , 2017, 1704.05878.

[100]  Robert M. Haberle,et al.  The atmosphere and climate of Mars , 2017 .

[101]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[102]  R. Barnes Tidal locking of habitable exoplanets , 2017, Celestial Mechanics and Dynamical Astronomy.

[103]  Eric T. Wolf,et al.  Assessing the Habitability of the TRAPPIST-1 System Using a 3D Climate Model , 2017, 1703.05815.

[104]  James Manners,et al.  Exploring the climate of Proxima B with the Met Office Unified Model (Corrigendum) , 2017, Astronomy & Astrophysics.

[105]  F. Forget,et al.  Modeling climate diversity, tidal dynamics and the fate of volatiles on TRAPPIST-1 planets , 2017, 1707.06927.

[106]  C. Moutou,et al.  The HARPS search for southern extra-solar planets , 2018, Astronomy & Astrophysics.

[107]  Mark S. Giampapa,et al.  The Transit Light Source Effect: False Spectral Features and Incorrect Densities for M-dwarf Transiting Planets , 2017, 1711.05691.

[108]  Yifan Zhou,et al.  The Near-infrared Transmission Spectra of TRAPPIST-1 Planets b, c, d, e, f, and g and Stellar Contamination in Multi-epoch Transit Spectra , 2018, The Astronomical Journal.

[109]  Michael D. Smith,et al.  Planetary Spectrum Generator: An accurate online radiative transfer suite for atmospheres, comets, small bodies and exoplanets , 2018, Journal of Quantitative Spectroscopy and Radiative Transfer.

[110]  H. Lammer,et al.  Upper atmospheres of terrestrial planets: Carbon dioxide cooling and the Earth’s thermospheric evolution , 2018, Astronomy & Astrophysics.

[111]  E. Agol,et al.  The 0.8–4.5 μm Broadband Transmission Spectra of TRAPPIST-1 Planets , 2018, The Astronomical Journal.

[112]  Brice-Olivier Demory,et al.  Stellar Parameters for Trappist-1 , 2017, 1712.01911.

[113]  R. Luger,et al.  Evolved Climates and Observational Discriminants for the TRAPPIST-1 Planetary System , 2018, The Astrophysical Journal.

[114]  Jens Kammerer,et al.  Exoplanet science with a space-based mid-infrared nulling interferometer , 2018, Astronomical Telescopes + Instrumentation.

[115]  E. Wolf Erratum: “Assessing the Habitability of the TRAPPIST-1 System Using a 3D Climate Model” (2017, ApJL, 839, L1) , 2018 .

[116]  W. Boos,et al.  Aquaplanet Models on Eccentric Orbits: Effects of the Rotation Rate on Observables , 2019, The Astronomical Journal.

[117]  D. Abbot,et al.  Scaling Relations for Terrestrial Exoplanet Atmospheres from Baroclinic Criticality , 2019, The Astrophysical Journal.

[118]  D. Abbot,et al.  Identifying Candidate Atmospheres on Rocky M Dwarf Planets via Eclipse Photometry , 2019, The Astrophysical Journal.

[119]  Jade H. Checlair,et al.  No Snowball on Habitable Tidally Locked Planets with a Dynamic Ocean , 2019, The Astrophysical Journal.

[120]  D. Abbot,et al.  The Atmospheric Circulation and Climate of Terrestrial Planets Orbiting Sun-like and M Dwarf Stars over a Broad Range of Planetary Parameters , 2019, The Astrophysical Journal.

[121]  D. Horton,et al.  Habitability and Spectroscopic Observability of Warm M-dwarf Exoplanets Evaluated with a 3D Chemistry-Climate Model , 2019, The Astrophysical Journal.

[122]  M. Way,et al.  Habitable Climate Scenarios for Proxima Centauri b with a Dynamic Ocean. , 2017, Astrobiology.

[123]  V. Meadows,et al.  The Detectability and Characterization of the TRAPPIST-1 Exoplanet Atmospheres with JWST , 2019, The Astronomical Journal.

[124]  R. Kopparapu,et al.  Simulated Phase-dependent Spectra of Terrestrial Aquaplanets in M Dwarf Systems , 2019, The Astrophysical Journal.

[125]  D. Abbot,et al.  Simulations of Water Vapor and Clouds on Rapidly Rotating and Tidally Locked Planets: A 3D Model Intercomparison , 2019, The Astrophysical Journal.

[126]  W. Kang Wetter Stratospheres on High-obliquity Planets , 2019, The Astrophysical Journal.

[127]  Drake Deming,et al.  Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b , 2019, Nature.

[128]  D. Burgarella,et al.  Origins Space Telescope Mission Concept Study Report , 2019, 1912.06213.

[129]  M. V. van Putten,et al.  Multi-messenger Extended Emission from the Compact Remnant in GW170817 , 2019, The Astrophysical Journal.

[130]  D. Deming,et al.  Stellar Activity Effects on Moist Habitable Terrestrial Atmospheres around M Dwarfs , 2019, The Astrophysical Journal.

[131]  Impact of Clouds and Hazes on the Simulated JWST Transmission Spectra of Habitable Zone Planets in the TRAPPIST-1 System , 2019, The Astrophysical Journal.

[132]  D. Abbot,et al.  Ocean Dynamics and the Inner Edge of the Habitable Zone for Tidally Locked Terrestrial Planets , 2019, The Astrophysical Journal.

[133]  Danielle S. Dineen,et al.  The First Habitable-zone Earth-sized Planet from TESS. I. Validation of the TOI-700 System , 2020, The Astronomical Journal.

[134]  M. Way,et al.  TRAPPIST-1 Habitable Atmosphere Intercomparison (THAI): motivations and protocol version 1.0 , 2020, Geoscientific Model Development.

[135]  Sara Seager,et al.  The First Habitable-zone Earth-sized Planet from TESS. II. Spitzer Confirms TOI-700 d , 2020, The Astronomical Journal.

[136]  D. Abbot,et al.  Clouds will Likely Prevent the Detection of Water Vapor in JWST Transmission Spectra of Terrestrial Exoplanets , 2019, The Astrophysical Journal.

[137]  A. Mandell,et al.  Dim Prospects for Transmission Spectra of Ocean Earths around M Stars , 2019, The Astrophysical Journal.