Spectrum sensing for cognitive OFDM system using free probability theory

Free probability theory, which has became a main branch of random matrix theory, is a valuable tool for describing the asymptotic behavior of multiple systems, especially for large random matrices. In this paper, using free probability theory, a new spectrum sensing scheme for cognitive OFDM system is proposed, which shows how asymptotic free behavior of random matrices and the property of Wishart distribution can be used to assist spectrum sensing for cognitive radios. Simulations over Rayleigh fading and AWGN channels demonstrate the proposed scheme has better detection performance and lower power need compared with the energy detection technique even for the case of a small sample of observations.

[1]  R. Speicher,et al.  Lectures on the Combinatorics of Free Probability: The free commutator , 2006 .

[2]  Vladimir I. Kostylev,et al.  Energy detection of a signal with random amplitude , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[3]  Alan Edelman,et al.  Free Probability, Sample Covariance Matrices, and Signal Processing , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[4]  Amir Ghasemi,et al.  Spectrum sensing in cognitive radio networks: the cooperation-processing tradeoff , 2007, Wirel. Commun. Mob. Comput..

[5]  Mérouane Debbah,et al.  Cognitive OFDM network sensing: a free probability approach , 2008, ArXiv.

[6]  C. Bordenave,et al.  The circular law , 2012 .

[7]  Mohamed-Slim Alouini,et al.  On the Energy Detection of Unknown Signals Over Fading Channels , 2007, IEEE Transactions on Communications.

[8]  J. I. Mararm,et al.  Energy Detection of Unknown Deterministic Signals , 2022 .

[9]  Anant Sahai,et al.  Cooperative Sensing among Cognitive Radios , 2006, 2006 IEEE International Conference on Communications.

[10]  G. Ganesan,et al.  Cooperative spectrum sensing in cognitive radio networks , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[11]  D. Voiculescu Addition of certain non-commuting random variables , 1986 .

[12]  Joseph Mitola,et al.  Cognitive Radio An Integrated Agent Architecture for Software Defined Radio , 2000 .

[13]  Mérouane Debbah,et al.  Asymptotic Behaviour of Random Vandermonde Matrices with Entries on the Unit Circle , 2008, 0802.3570.

[14]  Ying-Chang Liang,et al.  Asymptotic Performance of MMSE Receivers for Large Systems Using Random Matrix Theory , 2007, IEEE Transactions on Information Theory.

[15]  A. Ghasemi,et al.  Collaborative spectrum sensing for opportunistic access in fading environments , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[16]  Mérouane Debbah,et al.  Free Deconvolution for Signal Processing Applications , 2007, 2007 IEEE International Symposium on Information Theory.

[17]  Jeffrey H. Reed,et al.  A new approach to signal classification using spectral correlation and neural networks , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[18]  Yonghong Zeng,et al.  Eigenvalue-based spectrum sensing algorithms for cognitive radio , 2008, IEEE Transactions on Communications.

[19]  Anant Sahai,et al.  Some Fundamental Limits on Cognitive Radio , 2004 .

[20]  Raymond Séroul Programming for Mathematicians , 2000 .

[21]  Yonghong Zeng,et al.  Maximum-Minimum Eigenvalue Detection for Cognitive Radio , 2007, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications.

[22]  Pascal Bianchi,et al.  Cooperative spectrum sensing using random matrix theory , 2008, 2008 3rd International Symposium on Wireless Pervasive Computing.

[23]  Simon Haykin,et al.  Cognitive radio: brain-empowered wireless communications , 2005, IEEE Journal on Selected Areas in Communications.

[24]  Ying-Chang Liang,et al.  Block-iterative generalized decision feedback equalizers for large MIMO systems: algorithm design and asymptotic performance analysis , 2006, IEEE Transactions on Signal Processing.

[25]  R.W. Brodersen,et al.  Implementation issues in spectrum sensing for cognitive radios , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[26]  Hidekazu Murata,et al.  Interference Information Based Power Control for Cognitive Radio with Multi-Hop Cooperative Sensing , 2008, IEICE Trans. Commun..

[27]  H. Tang,et al.  Some physical layer issues of wide-band cognitive radio systems , 2005, First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005..

[28]  Chao Chen,et al.  Spectrum Sensing for Multiuser Network Based on Free Probability Theory , 2010, IEICE Trans. Commun..

[29]  Kei Sakaguchi,et al.  MIMO Spatial Spectrum Sharing for High Efficiency Mesh Network , 2008, IEICE Trans. Commun..

[30]  Kei Sakaguchi,et al.  Study on Soft Decision Based Cooperative Sensing for Cognitive Radio Networks , 2008, IEICE Trans. Commun..

[31]  Sulan Tang,et al.  Cooperative Spectrum Sensing Using Free Probability Theory , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[32]  Antonia Maria Tulino,et al.  Random Matrix Theory and Wireless Communications , 2004, Found. Trends Commun. Inf. Theory.

[33]  Ian F. Akyildiz,et al.  NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey , 2006, Comput. Networks.