An efficient first-order CASSCF method based on the renormalized Fock-operator technique

SummaryA new efficient first-order CASSCF method (multiconfiguration SCF (self consistent field) in a complete active space) is described. Its main characteristics are (i) use of the generalized Brillouin theorem (Fock-operator method), (ii) renormalization of single excitations, (iii) fast microiterations containing only two-index transformations, i.e. M3N2 steps. Convergence is generally reached in eight to twelve macroiterations. The method is applied to several examples (LiH, N2, AlO) and compared to other MCSCF (multiconfiguration SCF) methods.

[1]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[2]  Hans-Joachim Werner,et al.  A quadratically convergent MCSCF method for the simultaneous optimization of several states , 1981 .

[3]  P. Pulay Improved SCF convergence acceleration , 1982 .

[4]  P. Pulay,et al.  Direct inversion in the iterative subspace (DIIS) optimization of open‐shell, excited‐state, and small multiconfiguration SCF wave functions , 1986 .

[5]  Danny L. Yeager,et al.  Guaranteed convergence in ground state multiconfigurational self‐consistent field calculations , 1983 .

[6]  Isaiah Shavitt,et al.  Comparison of the convergence characteristics of some iterative wave function optimization methods , 1982 .

[7]  Volker Staemmler,et al.  Note on open shell restricted SCF calculations for rotation barriers about C-C double bonds: Ethylene and allene , 1977 .

[8]  Juergen Hinze,et al.  MC-SCF. I. The multi-configuration self-consistent-field method , 1973 .

[9]  Methods for efficient evaluation of integrals for Gaussian type basis sets , 1974 .

[10]  Wim Klopper,et al.  Experiences with the Cyber 205 for Quantum Chemical Calculations , 1986 .

[11]  P. Knowles,et al.  A second order multiconfiguration SCF procedure with optimum convergence , 1985 .

[12]  J. Bearden,et al.  Atomic energy levels , 1965 .

[13]  P. Knowles,et al.  An efficient second-order MC SCF method for long configuration expansions , 1985 .

[14]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[15]  F. B. Brown,et al.  Multireference configuration interaction treatment of potential energy surfaces: symmetric dissociation of H2O in a double-zeta basis , 1984 .

[16]  Bernard Levy,et al.  Generalized brillouin theorem for multiconfigurational SCF theories , 1968 .

[17]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[18]  Michel Dupuis,et al.  Evaluation of molecular integrals over Gaussian basis functions , 1976 .

[19]  An algorithm to solve open and closed‐shell and restricted MC–SCF equations , 1979 .

[20]  Shigeyoshi Yamamoto,et al.  Ab initio RHF and CASSCF studies on Fe–O bond in high‐valent iron‐oxo‐porphyrins , 1988 .

[21]  Per E. M. Siegbahn,et al.  An MC-SCF computation scheme for large scale calculations on polyatomic systems , 1978, Comput. Chem..

[22]  M. Paniagua,et al.  A minimal multiconfigurational technique , 1986, Journal of computational chemistry.

[23]  Kimio Ohno Japanese Supercomputers and Molecular Orbital Calculations , 1986 .

[24]  Hans Lischka,et al.  Implementation of an electronic structure program system on the CYBER 205 , 1985 .

[25]  Hans-Joachim Werner,et al.  A quadratically convergent multiconfiguration–self‐consistent field method with simultaneous optimization of orbitals and CI coefficients , 1980 .

[26]  Bowen Liu,et al.  Ab initio dipole moment functions for the X 2Σ+ and B 2Σ+ states of AlO , 1982 .

[27]  R. Jaquet,et al.  CEPA calculations on open-shell molecules. I. Outline of the method , 1981 .

[28]  U. Nagashima,et al.  Development of a program for MCSCF calculations with large basis sets , 1988 .

[29]  B. Roos,et al.  The complete active space SCF (CASSCF) method in a Newton–Raphson formulation with application to the HNO molecule , 1981 .