Photonic crystal chips for optical communications and quantum information processing

We discuss recent our recent progress on functional photonic crystals devices and circuits for classical and quantum information processing. For classical applications, we have demonstrated a room-temperature-operated, low threshold, nanocavity laser with pulse width in the picosecond regime; and an all-optical switch controlled with 60 fJ pulses that shows switching time on the order of tens of picoseconds. For quantum information processing, we discuss the promise of quantum networks on multifunctional photonic crystals chips. We also discuss a new coherent probing technique of quantum dots coupled to photonic crystal nanocavities and demonstrate amplitude and phase nonlinearities realized with control beams at the single photon level.

[1]  Dirk Reuter,et al.  Fabrication of genuine single-quantum-dot light-emitting diodes , 2006 .

[2]  D. D. Awschalom,et al.  Quantum information processing using quantum dot spins and cavity QED , 1999 .

[3]  Lukas Chrostowski,et al.  Injection locking of VCSELs , 2003 .

[4]  Dirk Englund,et al.  Local quantum dot tuning on photonic crystal chips , 2007 .

[5]  D. Englund,et al.  Ultra Fast Nonlinear Optical Tuning of Photonic Crystal Cavities , 2006, 2007 Conference on Lasers and Electro-Optics (CLEO).

[6]  Sze M. Tan,et al.  A computational toolbox for quantum and atomic optics , 1999 .

[7]  Chuang,et al.  Simple quantum computer. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Dirk Englund,et al.  Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade , 2008, 0804.2740.

[9]  Naresh Chand,et al.  Phase‐coupled two‐dimensional AlxGa1−xAs‐GaAs vertical‐cavity surface‐emitting laser array , 1990 .

[10]  Yasuhiko Arakawa,et al.  Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation , 2006 .

[11]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[12]  Dirk Englund,et al.  Efficient terahertz room-temperature photonic crystal nanocavity laser , 2007, 0705.0537.

[13]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[14]  Kent D. Choquette,et al.  Coherent coupling of two-dimensional arrays of defect cavities in photonic crystal vertical cavity surface-emitting lasers , 2005 .

[15]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[16]  Edo Waks,et al.  Dipole induced transparency in drop-filter cavity-waveguide systems. , 2006, Physical review letters.

[17]  Dirk Englund,et al.  Photonic crystals for quantum and classical information processing , 2008 .

[18]  Oskar Painter,et al.  Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system , 2007, Nature.

[19]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[20]  Gilles Nogues,et al.  Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED , 1999 .

[21]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[22]  Andrei Faraon,et al.  Generation and transfer of single photons on a photonic crystal chip. , 2007, Optics express.

[23]  Dirk Englund,et al.  Low-threshold surface-passivated photonic crystal nanocavity laser , 2007 .

[24]  Edo Waks,et al.  Dispersive properties and large Kerr nonlinearities using dipole-induced transparency in a single-sided cavity , 2006 .

[25]  Wan Kuang,et al.  High-Quality-Factor Photonic Crystal Heterostructure Laser , 2006 .

[26]  Dirk Englund,et al.  Ultrafast photonic crystal nanocavity laser , 2006 .

[27]  Soon-Hong Kwon,et al.  Electrically Driven Single-Cell Photonic Crystal Laser , 2004, Science.

[28]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[29]  J. Raimond,et al.  Seeing a single photon without destroying it , 1999, Nature.

[30]  Kae Nemoto,et al.  Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light , 2006 .

[31]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2006, QELS 2006.

[32]  Ilya Fushman,et al.  General recipe for designing photonic crystal cavities. , 2005, Optics express.

[33]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[34]  V. Kulakovskii,et al.  Strong coupling in a single quantum dot–semiconductor microcavity system , 2004, Nature.

[35]  Dirk Englund,et al.  Controlling Cavity Reflectivity with a Single Quantum Dot , 2007 .

[36]  Jean-Michel Gérard,et al.  Strong coupling for a single quantum dot in a microdisk , 2005 .

[37]  J. Vuckovic,et al.  Coupled photonic crystal microcavity array laser , 2005, 2005 IEEE LEOS Annual Meeting Conference Proceedings.

[38]  Gunnar Björk,et al.  Analysis of semiconductor microcavity lasers using rate equations , 1991 .

[39]  Edo Waks,et al.  Submicrosecond correlations in photoluminescence from InAs quantum dots , 2004 .

[40]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[41]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[42]  M. Lukin,et al.  Fault-tolerant quantum repeaters with minimal physical resources, and implementations based on single photon emitters , 2005, quant-ph/0502112.

[43]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[44]  Shota Kita,et al.  Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. , 2007, Optics express.

[45]  Jelena Vucković,et al.  Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays. , 2004, Optics letters.

[46]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[47]  D. Englund,et al.  Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. , 2005, Physical review letters.