Input–output linearization minimum sliding mode error feedback control for synchronization of chaotic system

Under the existence of system uncertainties and external disturbances, complete synchronization of chaotic systems is achieved by introducing a novel input–output linearization minimum sliding mode error feedback control with high control precision, which is based on the input–output linearization method and sliding mode control. In the literature, the magnitudes of bounded nonlinear dynamics of synchronous error system were required in the designed sliding mode controller. In this study, this article proposed a new approach to estimate the various uncertainties and disturbances on the basis of chaotic system. To facilitate the analysis, the concept of equivalent control error is introduced, which is the key to the utilization of input–output linearization minimum sliding mode error feedback control. A cost function is formulated on the basis of the principle of minimum sliding mode covariance constraint; then, the equivalent control error is estimated and fed back to the conventional sliding mode. It is shown that the sliding mode after the input–output linearization minimum sliding mode error feedback control will approximate to the ideal sliding mode, resulting in improved control performance and quality. Finally, the chaotic gyro system and chaotic FitzHugh–Nagumo neurons system have been employed to verify the proposed controller. Sufficient conditions to guarantee stable synchronization are given and the numerical simulations of complete synchronization of the two chaotic systems are performed to verify the effectiveness of the presented schemes.

[1]  Diyi Chen,et al.  Chaotic synchronization and anti-synchronization for a novel class of multiple chaotic systems via a sliding mode control scheme , 2012 .

[2]  H. Yau Design of adaptive sliding mode controller for chaos synchronization with uncertainties , 2004 .

[3]  Bo Zhang,et al.  Controlling chaos in space-clamped FitzHugh–Nagumo neuron by adaptive passive method , 2010 .

[4]  John C. Mason,et al.  Mathematics of Neural Networks: Models, Algorithms and Applications , 2012 .

[5]  Masami Iwase,et al.  A design of chaos synchronizing system using adaptive observer , 2002, Proceedings of the 41st SICE Annual Conference. SICE 2002..

[6]  H Henk Nijmeijer,et al.  Regulation and controlled synchronization for complex dynamical systems , 2000 .

[7]  M. A. Aziz-Alaoui,et al.  Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type , 2012, Comput. Math. Appl..

[8]  Guo-Hui Li,et al.  Generalized projective synchronization between two different chaotic systems using active backstepping control , 2006 .

[9]  Yinghui Gao,et al.  Chaos and bifurcation in the space-clamped FitzHugh–Nagumo system , 2004 .

[10]  Bin Deng,et al.  Adaptive backstepping sliding mode control for chaos synchronization of two coupled neurons in the external electrical stimulation , 2012 .

[11]  M. P. Aghababa,et al.  Synchronization of nonlinear chaotic electromechanical gyrostat systems with uncertainties , 2012 .

[12]  Suwat Kuntanapreeda,et al.  Adaptive synchronization of hyperchaotic systems via passivity feedback control with time-varying gains , 2010 .

[13]  Wenlin Li,et al.  Sliding mode control for uncertain chaotic systems with input nonlinearity , 2012 .

[14]  Ahmad Harb,et al.  Recursive backstepping control of chaotic Duffing oscillators , 2004 .

[15]  Firdaus E. Udwadia,et al.  A Constrained Motion Approach to the Synchronization of Multiple Coupled Slave Gyroscopes , 2012 .

[16]  Chi-Ching Yang,et al.  Adaptive synchronization of Lü hyperchaotic system with uncertain parameters based on single-input controller , 2011 .

[17]  Hamed Kebriaei,et al.  Robust adaptive synchronization of different uncertain chaotic systems subject to input nonlinearity , 2010 .

[18]  Xikui Ma,et al.  Synchronization of chaotic systems with parametric uncertainty using active sliding mode control , 2004 .

[19]  Mohammad Teshnehlab,et al.  Chaos control and modified projective synchronization of unknown heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive backstepping control , 2012 .

[20]  Chao Wang,et al.  Synchronization of uncertain chaotic systems via adaptive backstepping , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[21]  Bin Deng,et al.  Robust synchronization control of coupled chaotic neurons under external electrical stimulation , 2009 .

[22]  John C. Mason,et al.  Mathematics of Neural Networks , 1997, Operations Research/Computer Science Interfaces Series.

[23]  Nejib Smaoui,et al.  Synchronization of the unified chaotic systems using a sliding mode controller , 2009 .

[24]  B. Drazenovic,et al.  The invariance conditions in variable structure systems , 1969, Autom..

[25]  Yu Xinghuo Adaptive Terminal Sliding Mode Control of Uncertain Nonlinear Systems-Backstepping Approach , 1998 .

[26]  Her-Terng Yau,et al.  Nonlinear dynamic analysis and sliding mode control for a gyroscope system , 2011 .

[27]  Mou Chen,et al.  Disturbance-observer-based robust synchronization control of uncertain chaotic systems , 2012 .

[28]  Xiaoyi Ma,et al.  No-chattering sliding mode control chaos in Hindmarsh-Rose neurons with uncertain parameters , 2011, Comput. Math. Appl..

[29]  Christopher Edwards,et al.  Static output feedback stabilisation and synchronisation of complex networks with ℋ︁2 performance , 2010 .

[30]  Wei Xu,et al.  Synchronization of two chaotic nonlinear gyros using active control , 2005 .

[31]  Juhn-Horng Chen,et al.  A new hyper-chaotic system and its synchronization , 2009 .

[32]  Xinghuo Yu,et al.  Terminal sliding mode control design for uncertain dynamic systems , 1998 .

[33]  Bin Deng,et al.  Introducing internal model to robust output synchronization of FitzHugh–Nagumo neurons in external electrical stimulation , 2009 .

[34]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[35]  R. V. Dooren,et al.  Comments on “Chaos and chaos synchronization of a symmetric gyro with linear-plus-cubic damping” , 2003 .

[36]  Zhihong Man,et al.  Non-singular terminal sliding mode control of rigid manipulators , 2002, Autom..

[37]  B. Draenovi The invariance conditions in variable structure systems , 1969 .

[38]  M. Chou,et al.  Exotic dynamic behavior of the forced FitzHugh-Nagumo equations , 1996 .

[39]  Shuzhi Sam Ge,et al.  Singularity-free adaptive backstepping control of uncertain Lorenz system , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[40]  Jun-Juh Yan,et al.  Adaptive sliding mode control for synchronization of chaotic gyros with fully unknown parameters , 2006 .

[41]  M. T. Yassen,et al.  Chaos synchronization between two different chaotic systems using active control , 2005 .

[42]  Shihua Chen,et al.  Synchronizing the noise-perturbed unified chaotic system by sliding mode control , 2006 .

[43]  H.-K. Chen CHAOS AND CHAOS SYNCHRONIZATION OF A SYMMETRIC GYRO WITH LINEAR-PLUS-CUBIC DAMPING , 2002 .

[44]  Jui-Sheng Lin,et al.  Robust Synchronization of Two Chaotic Nonlinear Gyros via An Adaptive Controller , 2009 .

[45]  Sarah K. Spurgeon,et al.  A nonlinear sliding mode control design approach based on neural network modelling , 1999 .

[46]  Youxian Sun,et al.  Synchronization of uncertain complex dynamical networks via adaptive control , 2009 .

[47]  Xing-yuan Wang,et al.  A novel adaptive fuzzy sliding-mode controller for uncertain chaotic systems , 2013 .

[48]  Bin Deng,et al.  Synchronization of FitzHugh-Nagumo neurons in external electrical stimulation via nonlinear control , 2007 .

[49]  Chi-Ching Yang,et al.  Adaptive terminal sliding mode control subject to input nonlinearity for synchronization of chaotic gyros , 2013, Commun. Nonlinear Sci. Numer. Simul..

[50]  Xinghuo Yu,et al.  Terminal sliding modes with fast transient performance , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[51]  Jiang Wang,et al.  Chaos synchronization of coupled neurons under electrical stimulation via robust adaptive fuzzy control , 2010 .