Modulation of synaptic transmission at Ia-afferent connections on motoneurons during high-frequency afferent stimulation: dependence on motor task.

1. Monosynaptic excitatory postsynaptic potentials (EPSPs) were evoked in medial gastrocnemius motoneurons by maximal group Ia stimulation of the heteronymous lateral gastrocnemius-soleus nerve in anesthetized cats. Three different patterns of high-frequency stimulation were delivered to the nerve, and the EPSPs were averaged in register (1, 2, . . ., n) for each. 2. One pattern ("Burst") consisted of 32 shocks delivered every 2 s at an interstimulus interval of 6 ms (167 Hz). The second pattern ("Stepping") was a frequency-modulated burst of 52 shocks derived from a recording of a spindle during stepping and was delivered every 2 s. The third pattern ("Paw Shake") was from an extensor spindle afferent recorded during rapid paw shake and was delivered in groups of six bursts with an interburst interval of 75 ms and a 3-s pause between groups of six bursts. The EPSPs in each burst were averaged in register (1, 2, . . ., n) so that the relative amplitude of each EPSP in the burst could be ascertained. The EPSP produced by low-frequency stimulation of the nerve (18 Hz) was also recorded for each motoneuron. 3. The initial EPSP in most bursts was larger than the EPSP measured as a result of low-frequency stimulation. This potentiation, defined as the ratio of the amplitude of the initial EPSP of the response to that of the low-frequency control, was found to vary systematically as a function of amplitude of the control EPSP as well as the stimulus paradigm used.(ABSTRACT TRUNCATED AT 250 WORDS)