Spatiotemporal Closure

Spatiotemporal segmentation is an essential task for video analysis. The strong interconnection between finding an object's spatial support and finding its motion characteristics makes the problem particularly challenging. Motivated by closure detection techniques in 2D images, this paper introduces the concept of spatiotemporal closure. Treating the spatiotemporal volume as a single entity, we extract contiguous "tubes" whose overall surface is supported by strong appearance and motion discontinuities. Formulating our closure cost over a graph of spatiotemporal superpixels, we show how it can be globally minimized using the parametric maxflow framework in an efficient manner. The resulting approach automatically recovers coherent spatiotemporal components, corresponding to objects, object parts, and object unions, providing a good set of multiscale spatiotemporal hypotheses for high-level video analysis.

[1]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[2]  Rachid Deriche,et al.  Region tracking through image sequences , 1995, Proceedings of IEEE International Conference on Computer Vision.

[3]  Edward H. Adelson,et al.  A unified mixture framework for motion segmentation: incorporating spatial coherence and estimating the number of models , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[4]  Yair Weiss,et al.  Smoothness in layers: Motion segmentation using nonparametric mixture estimation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Demin Wang Unsupervised video segmentation based on watersheds and temporal tracking , 1998, IEEE Trans. Circuits Syst. Video Technol..

[6]  Jitendra Malik,et al.  Motion segmentation and tracking using normalized cuts , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[7]  Murat Kunt,et al.  Spatiotemporal Segmentation Based on Region Merging , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Patrick Bouthemy,et al.  A region-level motion-based graph representation and labeling for tracking a spatial image partition , 2000, Pattern Recognit..

[10]  Brendan J. Frey,et al.  Learning flexible sprites in video layers , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Ioannis Patras,et al.  Video Segmentation by MAP Labeling of Watershed Segments , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Jitendra Malik,et al.  Efficient spatiotemporal grouping using the Nystrom method , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[13]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Daniel DeMenthon,et al.  SPATIO-TEMPORAL SEGMENTATION OF VIDEO BY HIERARCHICAL MEAN SHIFT ANALYSIS , 2002 .

[15]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[16]  Daniel DeMenthon,et al.  A Survey of Spatio-Temporal Grouping Techniques , 2002 .

[17]  David J. Fleet,et al.  A Layered Motion Representation with Occlusion and Compact Spatial Support , 2002, ECCV.

[18]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[19]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[22]  Hayit Greenspan,et al.  Probabilistic space-time video modeling via piecewise GMM , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[24]  Daniel Cremers,et al.  Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation , 2005, International Journal of Computer Vision.

[25]  Sven J. Dickinson,et al.  Integrating region and boundary information for spatiallycoherent object tracking , 2006, Image Vis. Comput..

[26]  Martial Hebert,et al.  Learning to Find Object Boundaries Using Motion Cues , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[27]  Vladimir Kolmogorov,et al.  Applications of parametric maxflow in computer vision , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[28]  Yael Pritch,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008 1 Non-Chronological Video , 2022 .

[29]  Dimitris N. Metaxas,et al.  ]Video object segmentation by hypergraph cut , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Sven J. Dickinson,et al.  TurboPixels: Fast Superpixels Using Geometric Flows , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Cristian Sminchisescu,et al.  Constrained parametric min-cuts for automatic object segmentation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[32]  Cristian Sminchisescu,et al.  Object recognition as ranking holistic figure-ground hypotheses , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[33]  Sven J. Dickinson,et al.  Optimal Contour Closure by Superpixel Grouping , 2010, ECCV.

[34]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.