Classification of spin liquids on the square lattice with strong spin-orbit coupling

Spin liquids represent exotic types of quantum matter that evade conventional symmetry-breaking order even at zero temperature. Exhaustive classifications of spin liquids have been carried out in several systems, particularly in the presence of full SU(2) spin-rotation symmetry. Real magnetic compounds, however, generically break SU(2) spin symmetry as a result of spin-orbit coupling—which in many materials provides an “order one” effect. We generalize previous works by using the projective symmetry group method to classify Z_2 spin liquids on the square lattice when SU(2) spin symmetry is maximally lifted. We find that, counterintuitively, the lifting of spin symmetry actually results in vastly more spin-liquid phases compared to SU(2)-invariant systems. A generic feature of the SU(2)-broken case is that the spinons naturally undergo p+ip pairing; consequently, many of these Z_2 spin liquids feature a topologically nontrivial spinon band structure supporting gapless Majorana edge states. We study in detail several spin-liquid phases with varying numbers of gapless edge states and discuss their topological protection. The edge states are often protected by a combination of time reversal and lattice symmetries and hence resemble recently proposed topological crystalline superconductors.

[1]  Matthew B. Hastings,et al.  Topological entanglement entropy of a Bose-Hubbard spin liquid , 2011, 1102.1721.

[2]  X. Qi,et al.  Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. , 2008, Physical review letters.

[3]  M. Fisher,et al.  On the stability of U(1) spin liquids in two dimensions , 2004, cond-mat/0404751.

[4]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[5]  S. Rachel,et al.  Topological insulators and Mott physics from the Hubbard interaction , 2010, 1003.2238.

[6]  Daniel G. Nocera,et al.  Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet , 2012, Nature.

[7]  Wen,et al.  Mean-field theory of spin-liquid states with finite energy gap and topological orders. , 1991, Physical review. B, Condensed matter.

[8]  Read,et al.  Large-N expansion for frustrated quantum antiferromagnets. , 1991, Physical review letters.

[9]  T. Ng,et al.  Fermionic Theory for Quantum Antiferromagnets with Spin S>1/2 , 2010, 1005.5626.

[10]  Shinsei Ryu,et al.  Classification of topological insulators and superconductors in three spatial dimensions , 2008, 0803.2786.

[11]  A. Leggett,et al.  A theoretical description of the new phases of liquid He-3 , 1975 .

[12]  Maksym Serbyn,et al.  Paired chiral spin liquid with a Fermi surface in S=1 model on the triangular lattice , 2012, 1208.3231.

[13]  A. Vishwanath,et al.  Kitaev-Heisenberg models for iridates on the triangular, hyperkagome, kagome, fcc, and pyrochlore lattices , 2013, 1303.3290.

[14]  Shou-Cheng Zhang,et al.  Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells , 2006, Science.

[15]  C. Lhuillier,et al.  Kagome antiferromagnet: a chiral topological spin liquid? , 2011, Physical review letters.

[16]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[17]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[18]  M. Gilbert,et al.  Spin-orbit-free topological insulators without time-reversal symmetry. , 2014, Physical review letters.

[19]  X. Wen Quantum orders and symmetric spin liquids , 2001, cond-mat/0107071.

[20]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[21]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[22]  Fu-Chun Zhang,et al.  Na4Ir3O8 as a 3D spin liquid with fermionic spinons. , 2008, Physical review letters.

[23]  G. Jackeli,et al.  Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. , 2008, Physical review letters.

[24]  Ying Ran,et al.  Spontaneous spin ordering of a Dirac spin liquid in a magnetic field. , 2007, Physical review letters.

[25]  Ying Ran,et al.  Classification of symmetry enriched topological phases with exactly solvable models , 2012, 1212.0835.

[26]  Maissam Barkeshli,et al.  Correlated topological insulators and the fractional magnetoelectric effect , 2010, 1005.1076.

[27]  Yong Baek Kim,et al.  Spin-orbital liquids in non-Kramers magnets on Kagome lattice , 2013, 1304.2766.

[28]  T. Berlijn,et al.  Long-range magnetic ordering in Na 2 IrO 3 , 2011, 1104.4046.

[29]  Ying Ran,et al.  Z 2 spin liquids in the S=(1)/(2) Heisenberg model on the kagome lattice: A projective symmetry-group study of Schwinger fermion mean-field states , 2011, 1104.1432.

[30]  Sachdev,et al.  Kagomé- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons. , 1992, Physical review. B, Condensed matter.

[31]  Philip W. Anderson,et al.  On the ground state properties of the anisotropic triangular antiferromagnet , 1974 .

[32]  L. Sheng,et al.  Quantum spin-Hall effect and topologically invariant Chern numbers. , 2006, Physical review letters.

[33]  Ying Ran,et al.  Projected-wave-function study of the spin-1/2 Heisenberg model on the Kagomé lattice. , 2006, Physical review letters.

[34]  Yong Baek Kim,et al.  Quantum spin liquids in the absence of spin-rotation symmetry: Application to herbertsmithite , 2013, 1303.1154.

[35]  G. Jackeli,et al.  Kitaev-Heisenberg model on a honeycomb lattice: possible exotic phases in iridium oxides A2IrO3. , 2010, Physical review letters.

[36]  R. Mishmash,et al.  Theory of a competitive spin liquid state for weak Mott insulators on the triangular lattice. , 2013, Physical review letters.

[37]  Yogesh Singh,et al.  Relevance of the Heisenberg-Kitaev model for the honeycomb lattice iridates A2IrO3. , 2011, Physical review letters.

[38]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[39]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[40]  C. Lhuillier,et al.  Time reversal symmetry breaking chiral spin liquids: Projective symmetry group approach of bosonic mean-field theories , 2013, 1301.2038.

[41]  Kazuo Ueda,et al.  Phenomenological theory of unconventional superconductivity , 1991 .

[42]  R. Roy On the $Z_2$ classification of Quantum Spin Hall Models , 2006, cond-mat/0604211.

[43]  Leon Balents,et al.  Mott physics and band topology in materials with strong spin-orbit interaction , 2009, 0907.2962.

[44]  M. Hermele,et al.  Classifying fractionalization: Symmetry classification of gapped Z 2 spin liquids in two dimensions , 2012, 1212.0593.

[45]  L. Molenkamp,et al.  The Quantum Spin Hall Effect: Theory and Experiment , 2008, 0801.0901.

[46]  Sung-Sik Lee,et al.  Fractionalized quantum spin Hall effect , 2008, 0803.0756.

[47]  Yong Baek Kim,et al.  Three-dimensional nematic spin liquid in a stacked triangular lattice 6H-B structure , 2012, 1212.1470.

[48]  H. Takagi,et al.  Spin-liquid state in the S=1/2 hyperkagome antiferromagnet Na4Ir3O8. , 2007, Physical review letters.

[49]  Xiao-Gang Wen,et al.  Symmetry protected topological orders and the group cohomology of their symmetry group , 2011, 1106.4772.

[50]  S. Sondhi,et al.  Monopole flux state on the pyrochlore lattice , 2008, 0809.0528.

[51]  M. Porta,et al.  Bulk-Edge Correspondence for Two-Dimensional Topological Insulators , 2012, 1207.5989.

[52]  Yuan-Ming Lu,et al.  Gapless edge states of background field theory and translation-symmetric Z 2 spin liquids , 2012, 1206.2295.

[53]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[54]  S. Cheong,et al.  Spin waves and revised crystal structure of honeycomb iridate Na2IrO3. , 2012, Physical review letters.

[55]  Separation of spin and charge quantum numbers in strongly correlated systems. , 1993, Physical review. B, Condensed matter.

[56]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[57]  Xiao-Liang Qi,et al.  Topological invariants for the Fermi surface of a time-reversal-invariant superconductor , 2010 .

[58]  Yong Baek Kim,et al.  Gapless spin liquids on the three-dimensional hyperkagome lattice of Na4Ir3O8. , 2008, Physical review letters.

[59]  R. Thomale,et al.  Magnetic ordering phenomena of interacting quantum spin Hall models , 2012, 1206.3103.

[60]  A. Abrikosov Electron scattering on magnetic impurities in metals and anomalous resistivity effects , 1965 .

[61]  Fa Wang Schwinger boson mean field theories of spin liquid states on a honeycomb lattice: Projective symmetry group analysis and critical field theory , 2010, 1004.2693.

[62]  A. Amato,et al.  Quantum magnetism in the paratacamite family: towards an ideal kagomé lattice. , 2006, Physical review letters.

[63]  Robert-Jan Slager,et al.  The space group classification of topological band-insulators , 2012, Nature Physics.

[64]  X. Wen,et al.  Translation-symmetry-protected topological orders in quantum spin systems , 2009, 0907.4537.

[65]  T. Hughes,et al.  Existence of Majorana-fermion bound states on disclinations and the classification of topological crystalline superconductors in two dimensions. , 2013, Physical review letters.

[66]  Xiao-Gang Wen,et al.  Quantum order: a quantum entanglement of many particles , 2001, cond-mat/0110397.

[67]  E. Dagotto,et al.  Role of strong correlation in the recent angle-resolved photoemission spectroscopy experiments on cuprate superconductors. , 2005, Physical review letters.

[68]  Liang Fu,et al.  Topological crystalline insulators. , 2010, Physical review letters.