An Incremental and Layered Procedure for the Satisfiability of Linear Arithmetic Logic
暂无分享,去创建一个
Marco Bozzano | Roberto Bruttomesso | Alessandro Cimatti | Peter van Rossum | Roberto Sebastiani | Stephan Schulz | Tommi A. Junttila | A. Cimatti | R. Sebastiani | Roberto Bruttomesso | S. Schulz | M. Bozzano | P. Rossum
[1] Wilhelm Ackermann,et al. Solvable Cases Of The Decision Problem , 1954 .
[2] Karem A. Sakallah,et al. GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.
[3] Peter J. Stuckey,et al. Solving linear arithmetic constraints for user interface applications , 1997, UIST '97.
[4] Roberto J. Bayardo,et al. Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.
[5] Bart Selman,et al. Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.
[6] Peter F. Patel-Schneider,et al. FaCT and DLP , 1998, TABLEAUX.
[7] Daniel S. Weld,et al. The LPSAT Engine & Its Application to Resource Planning , 1999, IJCAI.
[8] Andrew V. Goldberg,et al. Negative-cycle detection algorithms , 1996, Math. Program..
[9] Greg J. Badros,et al. The Cassowary Linear Arithmetic Constraint Solving Algorithm: Interface and Implementation , 1999 .
[10] Enrico Giunchiglia,et al. SAT-Based Procedures for Temporal Reasoning , 1999, ECP.
[11] M. Moskewicz,et al. Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).
[12] Natarajan Shankar,et al. ICS: Integrated Canonizer and Solver , 2001, CAV.
[13] Michael J. Maher,et al. Solving Numerical Constraints , 2001, Handbook of Automated Reasoning.
[14] Piergiorgio Bertoli,et al. Integrating Boolean and Mathematical Solving: Foundations, Basic Algorithms, and Requirements , 2002, AISC.
[15] Gilles Audemard,et al. Bounded Model Checking for Timed Systems , 2002, FORTE.
[16] Rolf Drechsler,et al. RTL-datapath verification using integer linear programming , 2002, Proceedings of ASP-DAC/VLSI Design 2002. 7th Asia and South Pacific Design Automation Conference and 15h International Conference on VLSI Design.
[17] Stephan Schulz,et al. E - a brainiac theorem prover , 2002, AI Commun..
[18] Sharad Malik,et al. The Quest for Efficient Boolean Satisfiability Solvers , 2002, CAV.
[19] Piergiorgio Bertoli,et al. A SAT Based Approach for Solving Formulas over Boolean and Linear Mathematical Propositions , 2002, CADE.
[20] Alessandro Cimatti,et al. SAT-Based Bounded Model Checking for Timed Systems , 2002 .
[21] Xinming Ou,et al. Theorem Proving Using Lazy Proof Explication , 2003, CAV.
[22] Niklas Sörensson,et al. An Extensible SAT-solver , 2003, SAT.
[23] Sanjit A. Seshia,et al. A hybrid SAT-based decision procedure for separation logic with uninterpreted functions , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).
[24] Albert Oliveras,et al. Congruence Closure with Integer Offsets , 2003, LPAR.
[25] Kwang-Ting Cheng,et al. An efficient finite-domain constraint solver for circuits , 2004, Proceedings. 41st Design Automation Conference, 2004..
[26] Joël Ouaknine,et al. Abstraction-Based Satisfiability Solving of Presburger Arithmetic , 2004, CAV.
[27] Shuvendu K. Lahiri,et al. Zapato: Automatic Theorem Proving for Predicate Abstraction Refinement , 2004, CAV.
[28] Sergey Berezin,et al. CVC Lite: A New Implementation of the Cooperating Validity Checker Category B , 2004, CAV.
[29] Enrico Giunchiglia,et al. A SAT-based Decision Procedure for the Boolean Combination of Difference Constraints , 2004, SAT.
[30] Cesare Tinelli,et al. DPLL( T): Fast Decision Procedures , 2004, CAV.
[31] A. Cimatti,et al. The MathSAT Solver — a progress report , 2004 .
[32] Marco Bozzano,et al. Verifying Industrial Hybrid Systems with MathSAT , 2005, BMC@CAV.