Co-integration of resonant tunneling and double heterojunction bipolar transistors on InP

The authors report the first co-integration of resonant tunneling and heterojunction bipolar transistors. Both transistors are produced from a single epitaxial growth by metalorganic molecular beam epitaxy, on InP substrates. The fabrication process yields 9- mu m/sup 2/-emitter resonant tunneling bipolar transistors (RTBTs) operating at room temperature with peak-to-valley current ratios (PVRs) in the common-emitter transistor configuration, exceeding 70, at a resonant peak current density of 10 kA/cm/sup 2/, and a differential current gain at resonance of 19. The breakdown voltage of the In/sub 0.53/Ga/sub 0.47/As-InP base/collector junction, V/sub CBO/, is 4.2 V, which is sufficient for logic function demonstrations. Co-integrated 9- mu m/sup 2/-emitter double heterojunction bipolar transistors (DHBTs) with low collector/emitter offset voltage, 200 mV, and DC current gain as high as 32 are also obtained. On-wafer S-parameter measurements of the current gain cutoff frequency (f/sub T/) and the maximum frequency of oscillation (f/sub max/) yielded f/sub T/ and f/sub max/ values of 11 and 21 GHz for the RTBT and 59 and 43 GHz for the HBT, respectively.<<ETX>>