Information‐Theoretic Gene Selection In Expression Data

[1]  A. S. Weigend,et al.  Selecting Input Variables Using Mutual Information and Nonparemetric Density Estimation , 1994 .

[2]  Huan Liu,et al.  Discretization: An Enabling Technique , 2002, Data Mining and Knowledge Discovery.

[3]  Michel Verleysen,et al.  Resampling methods for parameter-free and robust feature selection with mutual information , 2007, Neurocomputing.

[4]  Ron Kohavi,et al.  Supervised and Unsupervised Discretization of Continuous Features , 1995, ICML.

[5]  Gregory M. Provan,et al.  Learning Bayesian Networks Using Feature Selection , 1995, AISTATS.

[6]  Geoffrey I. Webb,et al.  On Why Discretization Works for Naive-Bayes Classifiers , 2003, Australian Conference on Artificial Intelligence.

[7]  Gianluca Bontempi,et al.  On the Use of Variable Complementarity for Feature Selection in Cancer Classification , 2006, EvoWorkshops.

[8]  Huan Liu,et al.  Searching for Interacting Features , 2007, IJCAI.

[9]  Geoffrey I. Webb,et al.  Discretization for naive-Bayes learning: managing discretization bias and variance , 2008, Machine Learning.

[10]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[11]  M K Markey,et al.  Application of the mutual information criterion for feature selection in computer-aided diagnosis. , 2001, Medical physics.

[12]  Ivan Bratko,et al.  Testing the significance of attribute interactions , 2004, ICML.

[13]  Bernhard Sendhoff,et al.  How to Determine the Redundancy of Noisy Chaotic Time Series , 1996 .

[14]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[15]  Liam Paninski,et al.  Estimation of Entropy and Mutual Information , 2003, Neural Computation.

[16]  Huan Liu,et al.  Efficient Feature Selection via Analysis of Relevance and Redundancy , 2004, J. Mach. Learn. Res..

[17]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[18]  M. Studený,et al.  The Multiinformation Function as a Tool for Measuring Stochastic Dependence , 1998, Learning in Graphical Models.

[19]  Gianluca Bontempi,et al.  Causal filter selection in microarray data , 2010, ICML.

[20]  Naftali Tishby,et al.  The information bottleneck method , 2000, ArXiv.

[21]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[22]  Ivan Kojadinovic,et al.  Relevance measures for subset variable selection in regression problems based on k , 2005, Comput. Stat. Data Anal..

[23]  Chris Wiggins,et al.  ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context , 2004, BMC Bioinformatics.

[24]  Colas Schretter,et al.  Information-Theoretic Feature Selection in Microarray Data Using Variable Complementarity , 2008, IEEE Journal of Selected Topics in Signal Processing.

[25]  Rich Caruana,et al.  Greedy Attribute Selection , 1994, ICML.

[26]  Yudong D. He,et al.  A Gene-Expression Signature as a Predictor of Survival in Breast Cancer , 2002 .

[27]  Daniel Marbach,et al.  Information-Theoretic Inference of Gene Networks Using Backward Elimination , 2010, BIOCOMP.

[28]  Igor Vajda,et al.  Estimation of the Information by an Adaptive Partitioning of the Observation Space , 1999, IEEE Trans. Inf. Theory.

[29]  Huan Liu,et al.  Incremental Feature Selection , 1998, Applied Intelligence.

[30]  W. J. McGill Multivariate information transmission , 1954, Trans. IRE Prof. Group Inf. Theory.

[31]  F. Fleuret Fast Binary Feature Selection with Conditional Mutual Information , 2004, J. Mach. Learn. Res..

[32]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[33]  Kevin Kontos,et al.  Information-Theoretic Inference of Large Transcriptional Regulatory Networks , 2007, EURASIP J. Bioinform. Syst. Biol..

[34]  Fuhui Long,et al.  Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy , 2003, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[36]  Jonathon Shlens,et al.  Estimating Entropy Rates with Bayesian Confidence Intervals , 2005, Neural Computation.

[37]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[38]  Michel Verleysen,et al.  Mutual information for the selection of relevant variables in spectrometric nonlinear modelling , 2006, ArXiv.

[39]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[40]  David A. Bell,et al.  A Formalism for Relevance and Its Application in Feature Subset Selection , 2000, Machine Learning.

[41]  Carsten O. Daub,et al.  Estimating mutual information using B-spline functions – an improved similarity measure for analysing gene expression data , 2004, BMC Bioinformatics.