Sparse Covariance Matrix Estimation With Eigenvalue Constraints

We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online.

[1]  Adam J. Rothman,et al.  Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.

[2]  Bingsheng He,et al.  On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.

[3]  Adam J. Rothman,et al.  Sparse permutation invariant covariance estimation , 2008, 0801.4837.

[4]  Adam J. Rothman,et al.  A new approach to Cholesky-based covariance regularization in high dimensions , 2009, 0903.0645.

[5]  Weidong Liu,et al.  Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.

[6]  Adam J. Rothman Positive definite estimators of large covariance matrices , 2012 .

[7]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[8]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[9]  Fang Han,et al.  Semiparametric Principal Component Analysis , 2012, NIPS.

[10]  Martin J. Wainwright,et al.  A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.

[11]  T. Bengtsson,et al.  Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .

[12]  Harrison H. Zhou,et al.  Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.

[13]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[14]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[15]  H. Zou,et al.  Positive Definite $\ell_1$ Penalized Estimation of Large Covariance Matrices , 2012, 1208.5702.

[16]  Larry A. Wasserman,et al.  High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.

[17]  David R. Cox,et al.  Time Series Analysis , 2012 .

[18]  Karl J. Friston,et al.  Variance Components , 2003 .

[19]  H. Zou,et al.  Regularized rank-based estimation of high-dimensional nonparanormal graphical models , 2012, 1302.3082.

[20]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[21]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[22]  M. Pourahmadi,et al.  Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .

[23]  Harrison H. Zhou,et al.  OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION , 2012, 1302.3030.

[24]  A. U.S.,et al.  Sparse Estimation of a Covariance Matrix , 2010 .

[25]  Tuo Zhao,et al.  CODA: high dimensional copula discriminant analysis , 2013, J. Mach. Learn. Res..

[26]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[27]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[28]  Larry A. Wasserman,et al.  The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..

[29]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[30]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[31]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[32]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[33]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[34]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[35]  Jianqing Fan,et al.  Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.

[36]  P. Bickel,et al.  Some theory for Fisher''s linear discriminant function , 2004 .