Sparse Covariance Matrix Estimation With Eigenvalue Constraints
暂无分享,去创建一个
[1] Adam J. Rothman,et al. Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.
[2] Bingsheng He,et al. On non-ergodic convergence rate of Douglas–Rachford alternating direction method of multipliers , 2014, Numerische Mathematik.
[3] Adam J. Rothman,et al. Sparse permutation invariant covariance estimation , 2008, 0801.4837.
[4] Adam J. Rothman,et al. A new approach to Cholesky-based covariance regularization in high dimensions , 2009, 0903.0645.
[5] Weidong Liu,et al. Adaptive Thresholding for Sparse Covariance Matrix Estimation , 2011, 1102.2237.
[6] Adam J. Rothman. Positive definite estimators of large covariance matrices , 2012 .
[7] R. Tibshirani,et al. Regression shrinkage and selection via the lasso: a retrospective , 2011 .
[8] Noureddine El Karoui,et al. Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.
[9] Fang Han,et al. Semiparametric Principal Component Analysis , 2012, NIPS.
[10] Martin J. Wainwright,et al. A unified framework for high-dimensional analysis of $M$-estimators with decomposable regularizers , 2009, NIPS.
[11] T. Bengtsson,et al. Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .
[12] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[13] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[14] P. Young,et al. Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.
[15] H. Zou,et al. Positive Definite $\ell_1$ Penalized Estimation of Large Covariance Matrices , 2012, 1208.5702.
[16] Larry A. Wasserman,et al. High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.
[17] David R. Cox,et al. Time Series Analysis , 2012 .
[18] Karl J. Friston,et al. Variance Components , 2003 .
[19] H. Zou,et al. Regularized rank-based estimation of high-dimensional nonparanormal graphical models , 2012, 1302.3082.
[20] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[21] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[22] M. Pourahmadi,et al. Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .
[23] Harrison H. Zhou,et al. OPTIMAL RATES OF CONVERGENCE FOR SPARSE COVARIANCE MATRIX ESTIMATION , 2012, 1302.3030.
[24] A. U.S.,et al. Sparse Estimation of a Covariance Matrix , 2010 .
[25] Tuo Zhao,et al. CODA: high dimensional copula discriminant analysis , 2013, J. Mach. Learn. Res..
[26] Robert Haining,et al. Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .
[27] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[28] Larry A. Wasserman,et al. The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..
[29] Jianhua Z. Huang,et al. Covariance matrix selection and estimation via penalised normal likelihood , 2006 .
[30] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[31] Adam J. Rothman,et al. Generalized Thresholding of Large Covariance Matrices , 2009 .
[32] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[33] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[34] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[35] Jianqing Fan,et al. Sparsistency and Rates of Convergence in Large Covariance Matrix Estimation. , 2007, Annals of statistics.
[36] P. Bickel,et al. Some theory for Fisher''s linear discriminant function , 2004 .