Comparison of thermal properties of a hot target magnetron operated in DC and long HIPIMS modes

[1]  D. Kolodko,et al.  Current–voltage characteristics of an impulse magnetron discharge in target material vapor , 2020, Journal of Physics: Conference Series.

[2]  V. Grudinin,et al.  The properties of Cu films deposited by high rate magnetron sputtering from a liquid target , 2019, Vacuum.

[3]  D. Kolodko,et al.  Langmuir probe diagnostics of an impulse magnetron discharge with hot Cr target , 2019, Journal of Instrumentation.

[4]  H. Kim High mobility Si0.15Ge0.85 growth by using the molten target sputtering (MTS) within heteroepitaxy framework , 2019, Scientific Reports.

[5]  M. Bestetti,et al.  Chromium films deposition by hot target high power pulsed magnetron sputtering: Deposition conditions and film properties , 2019, Surface and Coatings Technology.

[6]  Geoffrey M Spinks,et al.  Biomimetic Thermal-sensitive Multi-transform Actuator , 2019, Scientific Reports.

[7]  V. P. Krivobokov,et al.  Angular thickness distribution and target utilization for hot Ni target magnetron sputtering , 2019, Vacuum.

[8]  D. Kolodko,et al.  Discharge parameters and plasma characterization in a dc magnetron with liquid Cu target , 2018, Vacuum.

[9]  K. Moiseev,et al.  Technological Features of the Thick Tin Film Deposition by with Magnetron Sputtering Form Liquid-Phase Target , 2018, Key Engineering Materials.

[10]  M. Bestetti,et al.  Deposition of Cr films by hot target magnetron sputtering on biased substrates , 2018, Surface and Coatings Technology.

[11]  G. Bleykher,et al.  The role of thermal processes and target evaporation in formation of self-sputtering mode for copper magnetron sputtering , 2018, Vacuum.

[12]  M. Bestetti,et al.  Hot target magnetron sputtering for ferromagnetic films deposition , 2018 .

[13]  L. Fekete,et al.  Features of copper coatings growth at high-rate deposition using magnetron sputtering systems with a liquid metal target , 2017 .

[14]  O. Korneva,et al.  Effect of material of the crucible on operation of magnetron sputtering system with liquid-phase target , 2017 .

[15]  G. Bleykher,et al.  MAGNETRON SPUTTERING WITH HOT SOLID TARGET: THERMAL PROCESSES AND EROSION , 2016 .

[16]  G. Bleykher,et al.  High-rate magnetron sputtering with hot target , 2016 .

[17]  A. Tumarkin,et al.  High-rate deposition of silicon films in a magnetron discharge with liquid target , 2016 .

[18]  V. P. Krivobokov,et al.  Aluminum films deposition by magnetron sputtering systems: Influence of target state and pulsing unit , 2016 .

[19]  A. Tumarkin,et al.  High-current impulse magnetron discharge with liquid target , 2016 .

[20]  D. Sidelev,et al.  Antifriction coatings based on a-C for biomedicine applications , 2016 .

[21]  A. Tumarkin,et al.  Deposition of copper coatings in a magnetron with liquid target , 2015 .

[22]  S. Güner,et al.  Influence of Al concentration and annealing temperature on structural, optical, and electrical properties of Al co-doped ZnO thin films , 2015 .

[23]  A. V. Kaziev,et al.  Preparation of coatings with low roughness by high-current impulse magnetron discharge , 2015, Other Conferences.

[24]  A. Anders,et al.  On sheath energization and Ohmic heating in sputtering magnetrons , 2013 .

[25]  J. Martan,et al.  On surface temperatures during high power pulsed magnetron sputtering using a hot target , 2011 .

[26]  J. Musil,et al.  High-rate reactive deposition of transparent SiO2 films containing low amount of Zr from molten magnetron target , 2010 .

[27]  J. Andersson,et al.  Sputtering in vacuum: A technology for ultraclean metallization and space propulsion , 2008, 2008 23rd International Symposium on Discharges and Electrical Insulation in Vacuum.

[28]  André Anders,et al.  Gasless sputtering: Opportunities for ultraclean metallization, coatings in space, and propulsion , 2008 .

[29]  U. Helmersson,et al.  The ion energy distributions and ion flux composition from a high power impulse magnetron sputtering discharge , 2006 .

[30]  V. P. Krivobokov,et al.  Sputtering of the magnetron diode target in the presence of an external ion beam , 2006 .

[31]  W. Posadowski Self-sustained magnetron co-sputtering of Cu and Ni , 2004 .

[32]  R. Doerner,et al.  Particle-induced erosion of materials at elevated temperature , 2004 .

[33]  Michael F. Modest,et al.  CHAPTER 22 – INVERSE RADIATIVE HEAT TRANSFER , 2003 .

[34]  Yunlong Li,et al.  Diagnostics and modeling in a pure argon plasma: Energy balance study , 1999 .

[35]  J. Musil,et al.  Low-pressure magnetron sputtering , 1998 .

[36]  W. M. Posadowski,et al.  Sustained self sputtering of different materials using dc magnetron , 1995 .

[37]  I. K. Fetisov,et al.  High-current low-pressure quasi-stationary discharge in a magnetic field: Experimental research , 1995 .

[38]  Z. Radzimski,et al.  Sustained self‐sputtering using a direct current magnetron source , 1993 .

[39]  Donald L. Smith,et al.  Physical sputtering model for fusion reactor first-wall materials , 1978 .

[40]  R. Krutenat,et al.  Vapor Deposition by Liquid Phase Sputtering , 1970 .