Multiabsorber transition-edge sensors for x-ray astronomy

Abstract. We are developing arrays of position-sensitive microcalorimeters for future x-ray astronomy applications. These position-sensitive devices commonly referred to as hydras consist of multiple x-ray absorbers, each with a different thermal coupling to a single-transition-edge sensor microcalorimeter. Their development is motivated by a desire to achieve very large pixel arrays with some modest compromise in performance. We report on the design, optimization, and first results from devices with small pitch pixels (<75  μm) being developed for a high-angular and energy resolution imaging spectrometer for Lynx. The Lynx x-ray space telescope is a flagship mission concept under study for the National Academy of Science 2020 decadal survey. Broadband full-width-half-maximum (FWHM) resolution measurements on a 9-pixel hydra have demonstrated ΔEFWHM  =  2.23  ±  0.14  eV at Al-Kα, ΔEFWHM  =  2.44  ±  0.29  eV at Mn-Kα, and ΔEFWHM  =  3.39  ±  0.23  eV at Cu-Kα. Position discrimination is demonstrated to energies below <1  keV and the device performance is well-described by a finite-element model. Results from a prototype 20-pixel hydra with absorbers on a 50-μm pitch have shown ΔEFWHM  =  3.38  ±  0.20  eV at Cr-Kα1. We are now optimizing designs specifically for Lynx and extending the number of absorbers up to 25/hydra. Numerical simulation suggests optimized designs could achieve ∼3  eV while being compatible with the bandwidth requirements of the state-of-the art multiplexed readout schemes, thus making a 100,000 pixel microcalorimeter instrument a realistic goal.

[1]  G. V. Chester,et al.  Solid State Physics , 2000 .

[2]  Simon R. Bandler,et al.  Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics , 2012 .

[3]  M. Sisti,et al.  Cryogenic particle detectors with superconducting phase transition thermometers , 1996 .

[4]  Philippe Peille,et al.  The Athena X-ray Integral Field Unit , 2018, 1807.06092.

[5]  David J. Goldie,et al.  Characterisation and modelling of transition edge sensor distributed read-out imaging devices , 2006 .

[6]  John M. Martinis,et al.  Superconducting transition-edge-microcalorimeter X-ray spectrometer with 2eV energy resolution at 1.5keV , 2000 .

[7]  Stephen J. Smith,et al.  Microwave SQUID multiplexing for the Lynx x-ray microcalorimeter , 2019, Journal of Astronomical Telescopes, Instruments, and Systems.

[8]  Maria Teresa Ceballos,et al.  The Athena X-ray Integral Field Unit (X-IFU) , 2018, Journal of Low Temperature Physics.

[9]  Bradley Dober,et al.  Simultaneous readout of 128 X-ray and gamma-ray transition-edge microcalorimeters using microwave SQUID multiplexing , 2017 .

[10]  Simon R. Bandler,et al.  Development of space-flight compatible room-temperature electronics for the Lynx x-ray microcalorimeter , 2019 .

[11]  E. Figueroa-Feliciano,et al.  Development of Position-Sensitive Transition-Edge Sensor X-Ray Detectors , 2009, IEEE Transactions on Applied Superconductivity.

[12]  Bradley K. Alpert,et al.  Code-division-multiplexed readout of large arrays of TES microcalorimeters , 2016 .

[13]  S. Smith,et al.  Longitudinal proximity effects in superconducting transition-edge sensors. , 2009, Physical review letters.

[14]  William L. Baun,et al.  Diagram and Nondiagram Lines in K Spectra of Aluminum and Oxygen from Metallic and Anodized Aluminum , 1965 .

[15]  G. C. Hilton,et al.  Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors , 2016, Journal of low temperature physics.

[16]  M. Krause,et al.  Natural widths of atomic K and L levels, Kα X‐ray lines and several KLL Auger lines , 1979 .

[17]  Simon R. Bandler,et al.  TES-Based X-ray Microcalorimeter Performances Under AC Bias and FDM for Athena , 2016 .

[18]  Joel N. Ullom,et al.  Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy , 2015 .

[19]  Stephen J. Smith,et al.  Development of x-ray microcalorimeter imaging spectrometers for the X-ray Surveyor mission concept , 2016, Astronomical Telescopes + Instrumentation.

[20]  J. W. den Herder,et al.  Ground calibration of the Astro-H (Hitomi) soft x-ray spectrometer , 2016, Astronomical Telescopes + Instrumentation.

[21]  Moshe Deutsch,et al.  KALPHA 1,2 AND KBETA 1,3 X-RAY EMISSION LINES OF THE 3D TRANSITION METALS , 1997 .

[22]  M. Eckart,et al.  Development of Embedded Heatsinking Layers for Compact Arrays of X-Ray TES Microcalorimeters , 2011, IEEE transactions on applied superconductivity.

[23]  B Nordfors A Note on the Al Kα3 α4 Lines in Metal and Oxide , 1955 .

[24]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[25]  Simon R. Bandler,et al.  Athermal energy loss from x-rays deposited in thin superconducting films on solid substrates , 2013 .

[26]  S. R. Bandler,et al.  Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics , 2013, IEEE Transactions on Applied Superconductivity.

[27]  Clarke,et al.  Hot-electron effects in metals. , 1994, Physical review. B, Condensed matter.

[28]  George W. Fraser,et al.  Optimised filtering for improved energy and position resolution in position-sensitive TES based X-ray detectors , 2006 .

[29]  Longitudinal Proximity Effect, Lateral Inverse Proximity Effect, and Nonequilibrium Superconductivity in Transition-edge Sensors , 2010 .

[30]  Enectali Figueroa-Feliciano,et al.  Complex microcalorimeter models and their application to position-sensitive detectors , 2006 .

[31]  Jessica A. Gaskin,et al.  The Lynx X-ray Observatory: concept study overview and status , 2018, Astronomical Telescopes + Instrumentation.

[32]  G. C. Hilton,et al.  Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena , 2016, Astronomical Telescopes + Instrumentation.

[33]  S. Smith,et al.  Implementation of complex signal-processing algorithms for position-sensitive microcalorimeters , 2009 .

[34]  T. Uruga,et al.  Synchrotron Beam Test of a Position-Sensitive Small-Pixel Ir-TES Array , 2008 .

[35]  G. Hilton,et al.  X-ray Microcalorimeter Research for Solar Physics at LMSAL and NIST: An Update , 2008 .

[36]  S. R. Bandler,et al.  Optimizing Arrays of Position-Sensitive TESs , 2008 .

[37]  Simon R. Bandler,et al.  Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV , 2015 .

[38]  Stephen J. Smith,et al.  Development of arrays of position-sensitive microcalorimeters for Constellation-X , 2008, Astronomical Telescopes + Instrumentation.