Multiabsorber transition-edge sensors for x-ray astronomy
暂无分享,去创建一个
Stephen J. Smith | Simon R. Bandler | Richard L. Kelley | Kazuhiro Sakai | Megan E. Eckart | Caroline A. Kilbourne | James A. Chervenak | Frederick S. Porter | Joseph S. Adams | Fred M. Finkbeiner | Aaron M. Datesman | Antoine R. Miniussi | Nicholas A. Wakeham | Edward J. Wassell | John E. Sadleir | Ruslan Hummatov | M. Eckart | R. Kelley | F. Porter | C. Kilbourne | S. Smith | S. Bandler | F. Finkbeiner | J. Sadleir | K. Sakai | J. Chervenak | A. Miniussi | A. Datesman | J. Adams | R. Hummatov | N. Wakeham | E. Wassell
[1] G. V. Chester,et al. Solid State Physics , 2000 .
[2] Simon R. Bandler,et al. Small Pitch Transition-Edge Sensors with Broadband High Spectral Resolution for Solar Physics , 2012 .
[3] M. Sisti,et al. Cryogenic particle detectors with superconducting phase transition thermometers , 1996 .
[4] Philippe Peille,et al. The Athena X-ray Integral Field Unit , 2018, 1807.06092.
[5] David J. Goldie,et al. Characterisation and modelling of transition edge sensor distributed read-out imaging devices , 2006 .
[6] John M. Martinis,et al. Superconducting transition-edge-microcalorimeter X-ray spectrometer with 2eV energy resolution at 1.5keV , 2000 .
[7] Stephen J. Smith,et al. Microwave SQUID multiplexing for the Lynx x-ray microcalorimeter , 2019, Journal of Astronomical Telescopes, Instruments, and Systems.
[8] Maria Teresa Ceballos,et al. The Athena X-ray Integral Field Unit (X-IFU) , 2018, Journal of Low Temperature Physics.
[9] Bradley Dober,et al. Simultaneous readout of 128 X-ray and gamma-ray transition-edge microcalorimeters using microwave SQUID multiplexing , 2017 .
[10] Simon R. Bandler,et al. Development of space-flight compatible room-temperature electronics for the Lynx x-ray microcalorimeter , 2019 .
[11] E. Figueroa-Feliciano,et al. Development of Position-Sensitive Transition-Edge Sensor X-Ray Detectors , 2009, IEEE Transactions on Applied Superconductivity.
[12] Bradley K. Alpert,et al. Code-division-multiplexed readout of large arrays of TES microcalorimeters , 2016 .
[13] S. Smith,et al. Longitudinal proximity effects in superconducting transition-edge sensors. , 2009, Physical review letters.
[14] William L. Baun,et al. Diagram and Nondiagram Lines in K Spectra of Aluminum and Oxygen from Metallic and Anodized Aluminum , 1965 .
[15] G. C. Hilton,et al. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors , 2016, Journal of low temperature physics.
[16] M. Krause,et al. Natural widths of atomic K and L levels, Kα X‐ray lines and several KLL Auger lines , 1979 .
[17] Simon R. Bandler,et al. TES-Based X-ray Microcalorimeter Performances Under AC Bias and FDM for Athena , 2016 .
[18] Joel N. Ullom,et al. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy , 2015 .
[19] Stephen J. Smith,et al. Development of x-ray microcalorimeter imaging spectrometers for the X-ray Surveyor mission concept , 2016, Astronomical Telescopes + Instrumentation.
[20] J. W. den Herder,et al. Ground calibration of the Astro-H (Hitomi) soft x-ray spectrometer , 2016, Astronomical Telescopes + Instrumentation.
[21] Moshe Deutsch,et al. KALPHA 1,2 AND KBETA 1,3 X-RAY EMISSION LINES OF THE 3D TRANSITION METALS , 1997 .
[22] M. Eckart,et al. Development of Embedded Heatsinking Layers for Compact Arrays of X-Ray TES Microcalorimeters , 2011, IEEE transactions on applied superconductivity.
[23] B Nordfors. A Note on the Al Kα3 α4 Lines in Metal and Oxide , 1955 .
[24] R. Pohl,et al. Thermal boundary resistance , 1989 .
[25] Simon R. Bandler,et al. Athermal energy loss from x-rays deposited in thin superconducting films on solid substrates , 2013 .
[26] S. R. Bandler,et al. Advances in Small Pixel TES-Based X-Ray Microcalorimeter Arrays for Solar Physics and Astrophysics , 2013, IEEE Transactions on Applied Superconductivity.
[27] Clarke,et al. Hot-electron effects in metals. , 1994, Physical review. B, Condensed matter.
[28] George W. Fraser,et al. Optimised filtering for improved energy and position resolution in position-sensitive TES based X-ray detectors , 2006 .
[30] Enectali Figueroa-Feliciano,et al. Complex microcalorimeter models and their application to position-sensitive detectors , 2006 .
[31] Jessica A. Gaskin,et al. The Lynx X-ray Observatory: concept study overview and status , 2018, Astronomical Telescopes + Instrumentation.
[32] G. C. Hilton,et al. Transition-edge sensor pixel parameter design of the microcalorimeter array for the x-ray integral field unit on Athena , 2016, Astronomical Telescopes + Instrumentation.
[33] S. Smith,et al. Implementation of complex signal-processing algorithms for position-sensitive microcalorimeters , 2009 .
[34] T. Uruga,et al. Synchrotron Beam Test of a Position-Sensitive Small-Pixel Ir-TES Array , 2008 .
[35] G. Hilton,et al. X-ray Microcalorimeter Research for Solar Physics at LMSAL and NIST: An Update , 2008 .
[36] S. R. Bandler,et al. Optimizing Arrays of Position-Sensitive TESs , 2008 .
[37] Simon R. Bandler,et al. Fine pitch transition-edge sensor X-ray microcalorimeters with sub-eV energy resolution at 1.5 keV , 2015 .
[38] Stephen J. Smith,et al. Development of arrays of position-sensitive microcalorimeters for Constellation-X , 2008, Astronomical Telescopes + Instrumentation.