The molecular genetics of hexose transport in yeasts.

Transport across the plasma membrane is the first, obligatory step of hexose utilization. In yeast cells the uptake of hexoses is mediated by a large family of related transporter proteins. In baker's yeast Saccharomyces cerevisiae the genes of 20 different hexose transporter-related proteins have been identified. Six of these transmembrane proteins mediate the metabolically relevant uptake of glucose, fructose and mannose for growth, two others catalyze the transport of only small amounts of these sugars, one protein is a galactose transporter but also able to transport glucose, two transporters act as glucose sensors, two others are involved in the pleiotropic drug resistance process, and the functions of the remaining hexose transporter-related proteins are not yet known. The catabolic hexose transporters exhibit different affinities for their substrates, and expression of their corresponding genes is controlled by the glucose sensors according to the availability of carbon sources. In contrast, milk yeast Kluyveromyces lactis contains only a few different hexose transporters. Genes of other monosaccharide transporter-related proteins have been found in fission yeast Schizosaccharomyces pombe and in the xylose-fermenting yeast Pichia stipitis. However, the molecular genetics of hexose transport in many other yeasts remains to be established. The further characterization of this multigene family of hexose transporters should help to elucidate the role of transport in yeast sugar metabolism.

[1]  M. Höfer,et al.  Glucose-transport-deficient mutants of Schizosaccharomyces pombe: phenotype, genetics and use for genetic complementation. , 1994, Microbiology.

[2]  N. Uden,et al.  Inactivation of active glucose transport in Candida wickerhamii is triggered by exocellular glucose , 1985 .

[3]  M. Bolotin-Fukuhara,et al.  Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport , 1996, Journal of bacteriology.

[4]  L. Rodríguez,et al.  Uptake of sucrose by Saccharomyces cerevisiae. , 1982, Archives of biochemistry and biophysics.

[5]  F. Zimmermann,et al.  Different signals control the activation of glycolysis in the yeast Saccharomyces cerevisiae , 1993, Yeast.

[6]  M. Höfer,et al.  Uphill transport of sugars in the yeast Rhodotorula gracilis. , 1965, Biochimica et biophysica acta.

[7]  S. Wölfl,et al.  Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Boulton,et al.  Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharomyces cerevisiae , 1995, Journal of bacteriology.

[9]  Analysis of a 26 756 bp segment from the left arm of yeast chromosome IV , 1996, Yeast.

[10]  M. Alcorn,et al.  A kinetic analysis of D-xylose transport in Rhodotorula glutinis. , 1978, Biochimica et biophysica acta.

[11]  C. Jacq,et al.  Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters , 1997, Molecular and cellular biology.

[12]  Tatsuya Maeda,et al.  A two-component system that regulates an osmosensing MAP kinase cascade in yeast , 1994, Nature.

[13]  J. Ramos,et al.  Role of cyclic-AMP-dependent protein kinase in catabolite inactivation of the glucose and galactose transporters in Saccharomyces cerevisiae , 1989, Journal of bacteriology.

[14]  H. Liang,et al.  Roles of multiple glucose transporters in Saccharomyces cerevisiae , 1993, Molecular and cellular biology.

[15]  L. Bisson,et al.  Comparison of glucose uptake kinetics in different yeasts , 1989, Journal of bacteriology.

[16]  Alexander D. Johnson,et al.  Ssn6-Tup1 is a general repressor of transcription in yeast , 1992, Cell.

[17]  H. Holzer,et al.  Catabolite inactivation of the galactose uptake system in yeast. , 1977, The Journal of biological chemistry.

[18]  M. Höfer,et al.  D-Gluconate is an alternative growth substrate for cultivation of Schizosaccharomyces pombe mutants , 1992, Archives of Microbiology.

[19]  D. Wolf,et al.  Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis , 1995, Journal of bacteriology.

[20]  E. Boles,et al.  Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. , 1997, European journal of biochemistry.

[21]  J. Pronk,et al.  Pyruvate Metabolism in Saccharomyces cerevisiae , 1996, Yeast.

[22]  M. Walsh,et al.  Affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose , 1994, Journal of bacteriology.

[23]  D. Engelke,et al.  Gal4 protein binding is required but not sufficient for derepression and induction of GAL2 expression. , 1993, The Journal of biological chemistry.

[24]  B. Völker,et al.  REGULATION OF GLUCOSE TRANSPORT IN SACCHAROMYCES CEREVISIAE , 1992 .

[25]  J. A. Barnett The utilization of sugars by yeasts. , 1976, Advances in carbohydrate chemistry and biochemistry.

[26]  S. Kane,et al.  Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity. , 1996, Biochemistry.

[27]  C. Hollenberg,et al.  Activation of Gal4p by Galactose-Dependent Interaction of Galactokinase and Gal80p , 1996, Science.

[28]  L. C. Robinson,et al.  Yeast casein kinase I homologues: an essential gene pair. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  B. André,et al.  An overview of membrane transport proteins in Saccharomyces cerevisiae , 1995, Yeast.

[30]  L. Oehlen,et al.  Decrease in glycolytic flux in Saccharomyces cerevisiae cdc35-1 cells at restrictive temperature correlates with a decrease in glucose transport. , 1994, Microbiology.

[31]  J. Gancedo Carbon catabolite repression in yeast. , 1992, European journal of biochemistry.

[32]  P. Maitra Glucose and Fructose Metabolism in a Phosphoglucoisomeraseless Mutant of Saccharomyces cerevisiae , 1971, Journal of bacteriology.

[33]  A. Goffeau,et al.  Genetics and biochemistry of yeast multidrug resistance. , 1994, Biochimica et biophysica acta.

[34]  M. Johnston,et al.  Two zinc-finger-containing repressors are responsible for glucose repression of SUC2 expression , 1996, Molecular and cellular biology.

[35]  Mark Johnston,et al.  Expression of the SUC2 Gene of Saccharomyces cerevisiae is Induced by Low Levels of Glucose , 1997 .

[36]  J. Boonstra,et al.  The Cdc25 protein of Saccharomyces cerevisiae is required for normal glucose transport. , 1996, Microbiology.

[37]  H. Liang,et al.  A novel signal transduction pathway in Saccharomyces cerevisiae defined by Snf3-regulated expression of HXT6. , 1996, Molecular biology of the cell.

[38]  H. Ronne,et al.  Yeast galactose permease is related to yeast and mammalian glucose transporters. , 1989, Gene.

[39]  M. Carlson,et al.  The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevisiae , 1987, Journal of bacteriology.

[40]  K. Nishizawa,et al.  Substrate Recognition Domain of the Gal2 Galactose Transporter in Yeast Saccharomyces cerevisiae as Revealed by Chimeric Galactose-Glucose Transporters (*) , 1995, The Journal of Biological Chemistry.

[41]  Francesc Posas,et al.  Yeast HOG1 MAP Kinase Cascade Is Regulated by a Multistep Phosphorelay Mechanism in the SLN1–YPD1–SSK1 “Two-Component” Osmosensor , 1996, Cell.

[42]  D. Wolf,et al.  Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole , 1997, Journal of bacteriology.

[43]  L. Bisson High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control , 1988, Journal of bacteriology.

[44]  H. Ronne,et al.  Yeast MIG1 repressor is related to the mammalian early growth response and Wilms' tumour finger proteins. , 1990, The EMBO journal.

[45]  M. Kawakita,et al.  Molecular cloning and characterization of a novel isoform of the human UDP-galactose transporter, and of related complementary DNAs belonging to the nucleotide-sugar transporter gene family. , 1996, Journal of biochemistry.

[46]  T. Maeda,et al.  Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. , 1995, Science.

[47]  W. A. Scheffers,et al.  Adaptation of the Kinetics of Glucose Transport to Environmental Conditions in the Yeast Candida utilis CBS 621: a Continuous-culture Study , 1988 .

[48]  M. Carlson,et al.  Null mutations in the SNF3 gene of Saccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations , 1986, Molecular and cellular biology.

[49]  R. P. Chambers,et al.  Selective hydrolysis of hardwood hemicellulose by acids , 1978 .

[50]  M. Johnston,et al.  Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose , 1995, Molecular and cellular biology.

[51]  C. Higgins,et al.  The ABC of channel regulation , 1995, Cell.

[52]  S. Harashima,et al.  The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter , 1991, Molecular and cellular biology.

[53]  A. H. Rose Energy-Yielding Metabolism , 1968 .

[54]  M. Johnston,et al.  Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose , 1996, Molecular and cellular biology.

[55]  J. Nikawa,et al.  Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. , 1991, The Journal of biological chemistry.

[56]  M. Saier,et al.  A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport. , 1993, Trends in biochemical sciences.

[57]  Helena Jeppsson,et al.  Biochemistry and physiology of xylose fermentation by yeasts , 1994 .

[58]  M. Carlson,et al.  REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. , 1995, The EMBO journal.

[59]  I. Waddell,et al.  Cloning and expression of a hepatic microsomal glucose transport protein. Comparison with liver plasma-membrane glucose-transport protein GLUT 2. , 1992, The Biochemical journal.

[60]  M. Carlson,et al.  Dosage-dependent modulation of glucose repression by MSN3 (STD1) in Saccharomyces cerevisiae , 1994, Molecular and cellular biology.

[61]  D. Fraenkel,et al.  Functional studies of yeast glucokinase , 1993, Journal of bacteriology.

[62]  B. Völker,et al.  Misuse of graphical analysis in nonlinear sugar transport kinetics by Eadie-Hofstee plots. , 1993, Biochimica et biophysica acta.

[63]  F. Azam,et al.  Glucose‐6‐phosphate as regulator of monosaccharide transport in baker's yeast , 1969, FEBS letters.

[64]  J. Bailey,et al.  Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae , 1990 .

[65]  M. Carlson,et al.  A yeast gene that is essential for release from glucose repression encodes a protein kinase. , 1986, Science.

[66]  M. Carlson,et al.  Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. , 1984, Genetics.

[67]  F. Gamo,et al.  The mutation DGT1-1 decreases glucose transport and alleviates carbon catabolite repression in Saccharomyces cerevisiae , 1994, Journal of bacteriology.

[68]  L. Bisson,et al.  Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae , 1984, Journal of bacteriology.

[69]  M. Johnston,et al.  Rgt1p of Saccharomyces cerevisiae, a key regulator of glucose-induced genes, is both an activator and a repressor of transcription , 1996, Molecular and cellular biology.

[70]  A. Goffeau,et al.  Yeast multidrug resistance: The PDR network , 1995, Journal of bioenergetics and biomembranes.

[71]  J. Ramos,et al.  Relationship between low- and high-affinity glucose transport systems of Saccharomyces cerevisiae , 1988, Journal of bacteriology.

[72]  M. Birnbaum The insulin-sensitive glucose transporter. , 1992, International review of cytology.

[73]  E. Querfurth,et al.  In vivo investigations of glucose transport in Saccharomyces cerevisiae , 2000, Biotechnology and bioengineering.

[74]  L. Bisson,et al.  Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[75]  R. Maleszka,et al.  Fermentation of D-xylose, xylitol, and D-xylulose by yeasts. , 1982, Canadian journal of microbiology.

[76]  L. Bisson,et al.  Transport of 6-deoxyglucose in Saccharomyces cerevisiae , 1983, Journal of bacteriology.

[77]  J. Vera,et al.  A possible role for a mammalian facilitative hexose transporter in the development of resistance to drugs , 1991, Molecular and cellular biology.

[78]  M. Carlson,et al.  Dominant and recessive suppressors that restore glucose transport in a yeast snf3 mutant. , 1991, Genetics.

[79]  L. Gustafsson,et al.  The extent to which the glycolytic flux in Saccharomyces cerevisiae is controlled by the glucose transport system varies with the extracellular glucose concentration , 1996 .

[80]  M. Ciriacy,et al.  Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevisiae , 1993, Journal of bacteriology.

[81]  R. Lagunas,et al.  Involvement of endocytosis in catabolite inactivation of the K+ and glucose transport systems in Saccharomyces cerevisiae. , 1994, FEMS microbiology letters.

[82]  L. Bisson,et al.  The SKS1 protein kinase is a multicopy suppressor of the snf3 mutation of Saccharomyces cerevisiae , 1996, Yeast.

[83]  T. Jeffries,et al.  Conversion of pentoses to ethanol by yeasts and fungi. , 1989, Critical reviews in biotechnology.

[84]  H. Lodish,et al.  The pancreatic β-cell glucose sensor , 1994 .

[85]  J. Ramos,et al.  Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles , 1989, Journal of bacteriology.

[86]  J. Horák Yeast nutrient transporters. , 1997, Biochimica et biophysica acta.

[87]  F. Gamo,et al.  A mutation affecting carbon catabolite repression suppresses growth defects in pyruvate carboxylase mutants from Saccharomyces cerevisiae , 1995, FEBS letters.

[88]  P. Robbins,et al.  Molecular cloning of the Golgi apparatus uridine diphosphate-N-acetylglucosamine transporter from Kluyveromyces lactis. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[89]  L. Bisson,et al.  Characterization of Xylose Uptake in the Yeasts Pichia heedii and Pichia stipitis , 1989, Applied and environmental microbiology.

[90]  Different activation energies in glucose uptake in Saccharomyces cerevisiae DFY1 suggest two transport systems. , 1997, Biochimica et biophysica acta.

[91]  W. A. Scheffers,et al.  Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis , 1989, Applied and environmental microbiology.

[92]  W. R. Wiley,et al.  Kinetic Characteristics of the Two Glucose Transport Systems in Neurospora crassa , 1971, Journal of bacteriology.

[93]  A. Kruckeberg,et al.  Yeast sugar transporters. , 1993, Critical reviews in biochemistry and molecular biology.

[94]  M. Walsh,et al.  Respiratory inhibitors affect incorporation of glucose into Saccharomyces cerevisiae cells, but not the activity of glucose transport , 1994, Yeast.

[95]  M. Maeda,et al.  Transmembrane segment 10 is important for substrate recognition in Ga12 and Hxt2 sugar transporters in the yeast Saccharomyces cerevisiae , 1996, FEBS letters.

[96]  I. Spencer‐Martins,et al.  The Significance of Active Fructose Transport and Maximum Temperature for Growth in the Taxonomy of , 1995 .

[97]  H. Fukuhara,et al.  Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene. , 1992, Molecular & general genetics : MGG.

[98]  L. Bisson,et al.  High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. , 1994, Genetics.

[99]  C. Hollenberg,et al.  Galactokinase encoded by GAL1 is a bifunctional protein required for induction of the GAL genes in Kluyveromyces lactis and is able to suppress the gal3 phenotype in Saccharomyces cerevisiae , 1991, Molecular and cellular biology.

[100]  H. Fukuhara,et al.  The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease , 1997, Molecular and General Genetics MGG.

[101]  A. Goffeau,et al.  Phylogenetic classification of the major superfamily of membrane transport facilitators, as deduced from yeast genome sequencing , 1995, FEBS letters.

[102]  L. Bisson,et al.  Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally , 1994, Journal of bacteriology.

[103]  T. Alamäe,et al.  Isolation and preliminary characterization of Pichia pinus mutants insensitive to glucose repression , 1994, Yeast.

[104]  S. Nwaka,et al.  Deletion of the ATH1 gene in Saccharomyces cerevisiae prevents growth on trehalose , 1996, FEBS letters.

[105]  R. Lagunas,et al.  Sugar transport in Saccharomyces cerevisiae. , 1993, FEMS microbiology reviews.

[106]  M Carlson,et al.  STD1 (MSN3) interacts directly with the TATA-binding protein and modulates transcription of the SUC2 gene of Saccharomyces cerevisiae. , 1995, Nucleic acids research.

[107]  L. Bisson,et al.  The C‐terminal Domain of Snf3p is Sufficient to Complement the Growth Defect of snf3 Null Mutations in Saccharomyces cerevisiae: SNF3 Functions in Glucose Recognition , 1997, Yeast.

[108]  C. Michels,et al.  Characterization of the glucose-induced inactivation of maltose permease in Saccharomyces cerevisiae , 1996, Journal of bacteriology.

[109]  F. Zimmermann,et al.  Redox Balances in Recombinant Saccharomyces cerevisiae a , 1996, Annals of the New York Academy of Sciences.

[110]  M. Höfer,et al.  Aerobic and Anaerobic Uptake of Sugars in Schizosaccharomyces pombe , 1987 .

[111]  C. F. Heredia,et al.  Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae , 1993, Yeast.

[112]  H. Fukuhara,et al.  The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis , 1993, Molecular and cellular biology.

[113]  A. Busturia,et al.  Identification of two forms of the maltose transport system in Saccharomyces cerevisiae and their regulation by catabolite inactivation , 1985 .

[114]  L. Bisson,et al.  The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters , 1991, Molecular and cellular biology.

[115]  H. C. Winther-Larsen,et al.  The STL1 gene of Saccharomyces cerevisiae is predicted to encode a sugar transporter-like protein. , 1994, Gene.

[116]  L. Bisson,et al.  Physiological characterization of putative high-affinity glucose transport protein Hxt2 of Saccharomyces cerevisiae by use of anti-synthetic peptide antibodies , 1993, Journal of bacteriology.

[117]  H. Fukuhara,et al.  Glucose transport in the yeast Kluyveromyces lactis. II. Transcriptional regulation of the glucose transporter gene RAG1. , 1992, Molecular & general genetics : MGG.

[118]  J M Thevelein,et al.  GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway , 1994, Molecular and cellular biology.

[119]  H. Lichtenberg-Fraté,et al.  Properties and Heterologous Expression of the Glucose Transporter GHT1 from Schizosaccharomyces pombe , 1997, Yeast.

[120]  A. Kruckeberg,et al.  The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport , 1990, Molecular and cellular biology.

[121]  B. Gasnier Characterization of low- and high-affinity glucose transports in the yeast Kluyveromyces marxianus. , 1987, Biochimica et biophysica acta.

[122]  F. Gamo,et al.  The low‐affinity component of the glucose transport system in Saccharomyces cerevisiae is not due to passive diffusion , 1995, Folia microbiologica.

[123]  P. Postma,et al.  Phosphoenolpyruvate:carbohydrate phosphotransferase system of bacteria. , 1985, Microbiological reviews.

[124]  M. Carlson,et al.  Mutational analysis of the SNF3 glucose transporter of Saccharomyces cerevisiae. , 1990, Molecular and cellular biology.

[125]  P. Orlean,et al.  Glycoprotein biosynthesis in yeast , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[126]  D. Ayusawa,et al.  Human UDP-galactose translocator: molecular cloning of a complementary DNA that complements the genetic defect of a mutant cell line deficient in UDP-galactose translocator. , 1996, Journal of biochemistry.

[127]  W. A. Scheffers,et al.  Glucose transport in crabtree-positive and crabtree-negative yeasts. , 1989, Journal of general microbiology.

[128]  R. Lagunas,et al.  Catabolite inactivation of the yeast maltose transporter requires ubiquitin-ligase npi1/rsp5 and ubiquitin-hydrolase npi2/doa4. , 1997, FEMS Microbiology Letters.

[129]  M. Carlson,et al.  Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. , 1994, Genetics.

[130]  W. R. Wiley,et al.  Regulation of Sugar Transport in Neurospora crassa , 1971, Journal of bacteriology.

[131]  R. Lagunas,et al.  cAMP-dependent protein kinase is not involved in catabolite inactivation of the transport of sugars in Saccharomyces cerevisiae. , 1994, Biochimica et biophysica acta.

[132]  C. F. Heredia,et al.  Transport of hexoses in yeast. Re‐examination of the sugar phosphorylation hypothesis with a new experimental approach , 1994, Yeast.

[133]  M. Mueckler Facilitative glucose transporters. , 1994, European journal of biochemistry.

[134]  R. Schekman,et al.  GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae , 1986, Journal of bacteriology.

[135]  M. Walsh,et al.  Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family , 1996, Journal of bacteriology.

[136]  J. Thevelein,et al.  Trehalose synthase: guard to the gate of glycolysis in yeast? , 1995, Trends in biochemical sciences.

[137]  C. Sottas,et al.  Characterization of AGT1 encoding a general α‐glucoside transporter from Saccharomyces , 1995, Molecular microbiology.

[138]  M. Carlson,et al.  The yeast SNF3 gene encodes a glucose transporter homologous to the mammalian protein. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[139]  F. Zimmermann,et al.  A multi‐layered sensory system controls yeast glycolytic gene expression , 1996, Molecular microbiology.

[140]  M A Aon,et al.  Fluxes of carbon, phosphorylation, and redox intermediates during growth of saccharomyces cerevisiae on different carbon sources , 1995, Biotechnology and bioengineering.

[141]  F. Zimmermann,et al.  Different internal metabolites trigger the induction of glycolytic gene expression in Saccharomyces cerevisiae , 1995, Journal of bacteriology.

[142]  J. Nevado,et al.  Galactose induces in Saccharomyces cerevisiae sensitivity of the utilization of hexoses to inhibition by D-glucosamine. , 1996, Canadian journal of microbiology.

[143]  A. Busturia,et al.  Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. , 1986, Journal of general microbiology.

[144]  J. Tschopp,et al.  Sequence and structure of the yeast galactose transporter , 1989, Journal of bacteriology.

[145]  M. Ciriacy,et al.  Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on qlycolytic flux , 1995, Molecular microbiology.

[146]  M. Johnston,et al.  GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats , 1991, Molecular and cellular biology.

[147]  J. Thevelein Signal transduction in yeast , 1994, Yeast.

[148]  H. Fukuhara,et al.  Low‐Affinity glucose carrier gene LGT1 of Saccharomyces cerevisiae, a homologue of the Kluyveromyces lactis RAG1 gene , 1993, Yeast.

[149]  P. Postma,et al.  High‐affinity glucose uptake in Saccharomyces cerevisiae is not dependent on the presence of glucose‐phosphorylating enzymes , 1996, Yeast.

[150]  R. C. Dickson,et al.  Primary structure of the lactose permease gene from the yeast Kluyveromyces lactis. Presence of an unusual transcript structure. , 1988, The Journal of biological chemistry.

[151]  Merja Penttilä,et al.  Utilization of xylose with recombinant Saccharomyces cerevisiae harbouring genes for xylose metabolism from Pichia stipitis , 1994 .

[152]  A. Kruckeberg,et al.  The hexose transporter family of Saccharomyces cerevisiae , 1996, Archives of Microbiology.