Sn2+-Regulated Synthesis of a Bone-like Fe3O4@N-Doped Carbon Composite as the Anode for High-Performance Lithium Storage

Iron-based oxides are a class of attractive anode materials for lithium-ion batteries by virtue of their high theoretical capacity, abundant resource, and low cost. Nevertheless, their practical ap...

[1]  Haijiao Zhang,et al.  Integrating SnS2 Quantum Dots with Nitrogen-Doped Ti3C2Tx MXene Nanosheets for Robust Sodium Storage Performance , 2021 .

[2]  H. Wu,et al.  Encapsulating yolk-shell FeS2@carbon microboxes into interconnected graphene framework for ultrafast lithium/sodium storage , 2020 .

[3]  H. Wu,et al.  Realizing Reversible Conversion‐Alloying of Sb(V) in Polyantimonic Acid for Fast and Durable Lithium‐ and Potassium‐Ion Storage , 2019, Advanced Energy Materials.

[4]  Jian Liu,et al.  Flexible asymmetric supercapacitor with high energy density based on optimized MnO2 cathode and Fe2O3 anode , 2019, Chinese Chemical Letters.

[5]  D. Zhao,et al.  Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries , 2019, Nano Energy.

[6]  Hyun Hwi Lee,et al.  Highly self-diffused Sn doping in α-Fe2O3 nanorod photoanodes initiated from β-FeOOH nanorod/FTO by hydrogen treatment for solar water oxidation. , 2018, Nanoscale.

[7]  Tao Chen,et al.  Surface Modulation of Hierarchical MoS2 Nanosheets by Ni Single Atoms for Enhanced Electrocatalytic Hydrogen Evolution , 2018, Advanced Functional Materials.

[8]  Haijiao Zhang,et al.  Strong Coupling of MoS2 Nanosheets and Nitrogen-Doped Graphene for High-Performance Pseudocapacitance Lithium Storage. , 2018, Small.

[9]  Jianming Wang,et al.  MOF-Derived Hierarchical MnO-Doped Fe3O4@C Composite Nanospheres with Enhanced Lithium Storage. , 2018, ACS applied materials & interfaces.

[10]  R. Holze,et al.  Ultrasmall Fe3O4 nanodots within N-doped carbon frameworks from MOFs uniformly anchored on carbon nanowebs for boosting Li-ion storage , 2018 .

[11]  Haijiao Zhang,et al.  Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability , 2018 .

[12]  X. Tao,et al.  Micro-tube biotemplate synthesis of Fe 3 O 4 /C composite as anode material for lithium-ion batteries , 2017 .

[13]  Xilai Jia,et al.  Hydrothermal synthesis of peony-like CuO micro/nanostructures for high-performance lithium-ion battery anodes , 2017 .

[14]  Yongsong Luo,et al.  Nanosilicon anodes for high performance rechargeable batteries , 2017 .

[15]  G. Diao,et al.  Synthesis of flexible Fe 3 O 4 /C nanofibers with buffering volume expansion performance and their application in lithium-ion batteries , 2017 .

[16]  Guoqing Zhang,et al.  Fabrication of Fe3 O4 Dots Embedded in 3D Honeycomb-Like Carbon Based on Metallo-Organic Molecule with Superior Lithium Storage Performance. , 2017, Small.

[17]  Min Chen,et al.  Hierarchical TiO2 /SnO2 Hollow Spheres Coated with Graphitized Carbon for High-Performance Electrochemical Li-Ion Storage. , 2017, Small.

[18]  R. Hu,et al.  Origin of Capacity Increasing in a Long‐Life Ternary Sn–Fe3O4@Graphite Anode for Li‐Ion Batteries , 2017 .

[19]  J. Zou,et al.  Flower-like C@SnOX@C hollow nanostructures with enhanced electrochemical properties for lithium storage , 2017, Nano Research.

[20]  M. Jaroniec,et al.  Fabrication of core–shell, yolk–shell and hollow Fe3O4@carbon microboxes for high-performance lithium-ion batteries , 2017 .

[21]  L. Mai,et al.  Phosphorus Enhanced Intermolecular Interactions of SnO2 and Graphene as an Ultrastable Lithium Battery Anode. , 2017, Small.

[22]  Chaojiang Niu,et al.  Thermal Induced Strain Relaxation of 1D Iron Oxide for Solid Electrolyte Interphase Control and Lithium Storage Improvement , 2017 .

[23]  Young Soo Yoon,et al.  In situ analysis of SnO2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries , 2017 .

[24]  Hongwei Zhang,et al.  Tailored Yolk–Shell Sn@C Nanoboxes for High‐Performance Lithium Storage , 2017 .

[25]  A. Xu,et al.  Carbon-Coated Fe3O4/VOx Hollow Microboxes Derived from Metal-Organic Frameworks as a High-Performance Anode Material for Lithium-Ion Batteries. , 2017, ACS applied materials & interfaces.

[26]  Qiang Xin,et al.  Hierarchically structured Fe3O4/C nanosheets for effective lithium-ion storage , 2017 .

[27]  Haijiao Zhang,et al.  Eco-friendly synthesis of rutile TiO2 nanostructures with controlled morphology for efficient lithium-ion batteries , 2016 .

[28]  Yun Zhang,et al.  Nitrogen‐Doped Graphene Ribbon Assembled Core–Sheath MnO@Graphene Scrolls as Hierarchically Ordered 3D Porous Electrodes for Fast and Durable Lithium Storage , 2016 .

[29]  Jian-guo Tang,et al.  Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries , 2016, Nano Research.

[30]  Yonghai Song,et al.  MOF-derived Fe3O4/carbon octahedral nanostructures with enhanced performance as anode materials for lithium-ion batteries , 2016 .

[31]  Xutang Tao,et al.  Electronic structure and optical property of metal-doped Ga2O3: a first principles study , 2016 .

[32]  Shun Li,et al.  Bio-Inspired Hierarchical Nanofibrous Fe3O4-TiO2-Carbon Composite as a High-Performance Anode Material for Lithium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[33]  Yongsheng Chen,et al.  Excellent cycling stability with high SnO2 loading on a three- dimensional graphene network for lithium ion batteries , 2016 .

[34]  U. Paik,et al.  Etching‐in‐a‐Box: A Novel Strategy to Synthesize Unique Yolk‐Shelled Fe3O4@Carbon with an Ultralong Cycling Life for Lithium Storage , 2016 .

[35]  Gang Wang,et al.  Hybridization of graphene nanosheets and carbon-coated hollow Fe3O4 nanoparticles as a high-performance anode material for lithium-ion batteries , 2016 .

[36]  M. Gutiérrez,et al.  Nitrogen-doped carbons prepared from eutectic mixtures as metal-free oxygen reduction catalysts , 2016 .

[37]  Jiaqiang Huang,et al.  In-situ TEM examination and exceptional long-term cyclic stability of ultrafine Fe 3 O 4 nanocrystal/carbon nanofiber composite electrodes , 2015 .

[38]  Dingsheng Wang,et al.  Chemical vapor deposition prepared bi-morphological carbon-coated Fe 3 O 4 composites as anode materials for lithium-ion batteries , 2015 .

[39]  Yang Jiang,et al.  Sandwich-Structured Graphene-Fe3O4@Carbon Nanocomposites for High-Performance Lithium-Ion Batteries. , 2015, ACS applied materials & interfaces.

[40]  S. Deng,et al.  Solvothermal route based in situ carbonization to Fe3O4@C as anode material for lithium ion battery , 2014 .

[41]  Xiulin Fan,et al.  Carbon encapsulated 3D hierarchical Fe3O4 spheres as advanced anode materials with long cycle lifetimes for lithium-ion batteries , 2014 .

[42]  Seong‐Hyeon Hong,et al.  SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance , 2014, Nano Research.

[43]  Daniel Sharon,et al.  On the challenge of developing advanced technologies for electrochemical energy storage and conversion , 2014 .

[44]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[45]  C. Shi,et al.  Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. , 2013, ACS applied materials & interfaces.

[46]  Qiang Sun,et al.  Dopamine as the coating agent and carbon precursor for the fabrication of N-doped carbon coated Fe3O4 composites as superior lithium ion anodes. , 2013, Nanoscale.

[47]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[48]  M. Armand,et al.  Building better batteries , 2008, Nature.

[49]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[50]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[51]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[52]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[53]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[54]  Haijiao Zhang,et al.  Ultrasmall SnO2 nanocrystals sandwiched into polypyrrole and Ti3C2Tx MXene for highly effective sodium storage , 2021 .

[55]  Tongtao Li,et al.  Pomegranate-like, carbon-coated Fe3O4 nanoparticle superparticles for high-performance lithium storage , 2018 .

[56]  Chong Chen,et al.  Bacteria-inspired Fabrication of Fe3O4-Carbon/Graphene Foam for Lithium-Ion Battery Anodes , 2017 .

[57]  Haijiao Zhang,et al.  Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability , 2016, Nano Research.

[58]  J. S. Chae,et al.  Fe3O4 nanoparticles encapsulated in one-dimensional Li4Ti5O12 nanomatrix: An extremely reversible anode for long life and high capacity Li-ion batteries , 2016 .