Coding theorem and strong converse for quantum channels

We present a new proof of Holevo's (1973, 1977) coding theorem for transmitting classical information through quantum channels, and its strong converse. The technique is largely inspired by Wolfwitz's (1964) combinatorial approach using types of sequences. As a byproduct of our approach which is independent of previous ones, both in the coding theorem and the converse, we can give a new proof of Holevo's information bound.

[1]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[2]  Andreas J. Winter Coding theorems of quantum information theory , 1999 .

[3]  Akio Fujiwara,et al.  Operational Capacity and Pseudoclassicality of a Quantum Channel , 1998, IEEE Trans. Inf. Theory.

[4]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[5]  Alexander Semenovich Holevo,et al.  Quantum coding theorems , 1998 .

[6]  W. Arveson An Invitation To C*-Algebras , 1976 .

[7]  A. Holevo Problems in the mathematical theory of quantum communication channels , 1977 .

[8]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  A. Holevo Coding Theorems for Quantum Channels , 1999 .

[10]  C. H. Bennett,et al.  Quantum nonlocality without entanglement , 1998, quant-ph/9804053.

[11]  A. S. Holevo On Quantum Communication Channels with Constrained Inputs , 1997 .

[12]  Amiel Feinstein,et al.  A new basic theorem of information theory , 1954, Trans. IRE Prof. Group Inf. Theory.

[13]  H. Yuen Coding theorems of quantum information theory , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[14]  J. Wolfowitz Coding Theorems of Information Theory , 1962, Ergebnisse der Mathematik und Ihrer Grenzgebiete.

[15]  Jacob Wolfowitz Coding Theorems of Information Theory , 1962 .

[16]  Tomohiro Ogawa,et al.  Strong converse to the quantum channel coding theorem , 1999, IEEE Trans. Inf. Theory.

[17]  Andreas Winter Languages of Quantum Information Theory , 1998 .

[18]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[19]  Schumacher,et al.  Classical information capacity of a quantum channel. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[20]  Alexander Semenovich Holevo Coding theorems for quantum communication channels , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).