Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests

We evaluate Vickers hardness and true instrumented indentation test (IIT) hardness of 24 metals over a wide range of mechanical properties using just IIT parameters by taking into account the real contact morphology beneath the Vickers indenter. Correlating the conventional Vickers hardness, indentation contact morphology, and IIT parameters for the 24 metals reveals relationships between contact depths and apparent material properties. We report the conventional Vickers and true IIT hardnesses measured only from IIT contact depths; these agree well with directly measured hardnesses within ±6% for Vickers hardness and ±10% for true IIT hardness.

[1]  Yang-Tse Cheng,et al.  What is indentation hardness , 2000 .

[2]  A. Barone,et al.  The influence of plastic hardening on surface deformation modes around vickers and spherical indents , 2000 .

[3]  Johann Michler,et al.  Determination of plastic properties of metals by instrumented indentation using different sharp indenters , 2003 .

[4]  Standard Test Methods for Tension Testing of Metallic Materials 1 , 2022 .

[5]  Michael V. Swain,et al.  Errors associated with depth-sensing microindentation tests , 1995 .

[6]  George M. Pharr,et al.  On the measurement of stress–strain curves by spherical indentation , 2001 .

[7]  D. Kwon,et al.  Analysis of sharp-tip-indentation load–depth curve for contact area determination taking into account pile-up and sink-in effects , 2004 .

[8]  A. Minor,et al.  Indentation across size scales and disciplines: Recent developments in experimentation and modeling , 2007 .

[9]  D. Kwon,et al.  Quantitative determination of contact depth during spherical indentation of metallic materials- : A FEM study , 2006 .

[10]  Subra Suresh,et al.  DETERMINATION OF ELASTO-PLASTIC PROPERTIES BY INSTRUMENTED SHARP INDENTATION: GUIDELINES FOR PROPERTY EXTRACTION , 2000 .

[11]  Konstantinos-Dionysios Bouzakis,et al.  Coating elastic–plastic properties determined by means of nanoindentations and FEM-supported evaluation algorithms , 2004 .

[12]  F. C. Lea Hardness of metals , 1936 .

[13]  S. Suresh,et al.  Depth-sensing instrumented indentation with dual sharp indenters , 2003 .

[14]  Subra Suresh,et al.  Computational modeling of the forward and reverse problems in instrumented sharp indentation , 2001 .

[15]  Dongil Kwon,et al.  Derivation of plastic stress–strain relationship from ball indentations: Examination of strain definition and pileup effect , 2001 .

[16]  C. Schuh Nanoindentation studies of materials , 2006 .

[17]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[18]  D. Kwon,et al.  Evaluating plastic flow properties by characterizing indentation size effect using a sharp indenter , 2008 .

[19]  Jürgen Malzbender,et al.  Indentation load–displacement curve, plastic deformation, and energy , 2002 .

[20]  Subra Suresh,et al.  DETERMINATION OF ELASTOPLASTIC PROPERTIES BY INSTRUMENTED SHARP INDENTATION , 1999 .

[21]  Michael V. Swain,et al.  Determining the mechanical properties of small volumes of material from submicrometer spherical indentations , 1995 .

[22]  Yang-Tse Cheng,et al.  Scaling relationships in conical indentation of elastic-perfectly plastic solids , 1999 .

[23]  Dongil Kwon,et al.  Influence of surface-roughness on indentation size effect , 2007 .

[24]  D. Kwon,et al.  Optimum definition of true strain beneath a spherical indenter for deriving indentation flow curves , 2006 .

[25]  George T. Hahn,et al.  Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests , 1998 .

[26]  P. Paufler,et al.  Micro- and nanoindentation techniques for mechanical characterisation of materials , 2006 .

[27]  D. Tabor Hardness of Metals , 1937, Nature.

[28]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[29]  F. Kosel,et al.  New analytical procedure to determine stress-strain curve from spherical indentation data , 1998 .

[30]  Alexei Bolshakov,et al.  Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques , 1998 .

[31]  S. Nahm,et al.  Investigations on indentation size effects using a pile-up corrected hardness , 2008 .

[32]  Yang-Tse Cheng,et al.  Scaling, dimensional analysis, and indentation measurements , 2004 .

[33]  A. Fischer-Cripps A review of analysis methods for sub-micron indentation testing☆ , 2000 .

[34]  J. Vlassak,et al.  Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments , 1998 .

[35]  Yang-Tse Cheng,et al.  Relationships between hardness, elastic modulus, and the work of indentation , 1998 .

[36]  William D. Nix,et al.  A method for interpreting the data from depth-sensing indentation instruments , 1986 .

[37]  D. Kwon,et al.  Determination of tensile properties by instrumented indentation technique: Representative stress and strain approach , 2006 .