Early mesozoic arc–back-arc system in the leading edge of the Tibetan Plateau

[1]  Yulin Deng,et al.  Subduction initiation of the Neo-Tethys oceanic lithosphere by collision‐induced subduction transference , 2021, Gondwana Research.

[2]  G. Lash,et al.  Early Triassic Pachycladina fauna newly found in the southern Lhasa Terrane of Tibet and its palaeogeographic implications , 2020 .

[3]  Yulin Deng,et al.  Early Carboniferous Back‐Arc Rifting‐Related Magmatism in Southern Tibet: Implications for the History of the Lhasa Terrane Separation From Gondwana , 2020, Tectonics.

[4]  F. Liu,et al.  Remnants of middle Triassic oceanic lithosphere in the western Indus–Tsangpo suture zone, southwestern Tibet , 2020, Terra Nova.

[5]  C. Limarino,et al.  Interpreting detrital modes and geochemistry of sandstones from the late Paleozoic Tepuel-Genoa Basin: Paleogeographic implications (Patagonia, Argentina) , 2020 .

[6]  Shunbao Gao,et al.  Ages and petrogenesis of the late Triassic andesitic rocks at the Luerma porphyry Cu deposit, western Gangdese, and implications for regional metallogeny , 2020 .

[7]  Yulin Deng,et al.  Geochronology and geochemistry of volcanic rocks of the Bima Formation, southern Lhasa subterrane, Tibet: Implications for early Neo-Tethyan subduction , 2020, Gondwana Research.

[8]  San-zhong Li,et al.  Subduction–collision and exhumation of eclogites in the Lhasa terrane, Tibet Plateau , 2020 .

[9]  B. Xia,et al.  The Late Jurassic Zedong ophiolite: A remnant of subduction initiation within the Yarlung Zangbo Suture Zone (southern Tibet) and its tectonic implications , 2020 .

[10]  Z. Yi,et al.  Identification of a new source for the Triassic Langjiexue Group: Evidence from a gabbro-diorite complex in the Gangdese magmatic belt and zircon microstructures from sandstones in the Tethyan Himalaya, southern Tibet , 2020 .

[11]  W. Mooney,et al.  Back-arc basin evolution in the southern Lhasa sub-terrane, southern Tibet: Constraints from U-Pb ages and in-situ Lu-Hf isotopes of detrital zircons , 2019, Journal of Asian Earth Sciences.

[12]  Yulin Deng,et al.  Early Jurassic volcanic rocks in the Xiongcun district, southern Lhasa subterrane, Tibet: Implications for the tectono-magmatic events associated with the early evolution of the Neo-Tethys Ocean , 2019, Lithos.

[13]  A. Nutman,et al.  Age and Provenance of the Nindam Formation, Ladakh, NW Himalaya: Evolution of the Intraoceanic Dras Arc Before Collision With India , 2019, Tectonics.

[14]  A. Kerr,et al.  Nature and Evolution of Crust in Southern Lhasa, Tibet: Transformation From Microcontinent to Juvenile Terrane , 2019, Journal of Geophysical Research: Solid Earth.

[15]  Yulin Deng,et al.  Early–Middle Jurassic (182–170 Ma) Ruocuo adakitic porphyries, southern margin of the Lhasa terrane, Tibet: Implications for geodynamic setting and porphyry Cu–Au mineralization , 2019, Journal of Asian Earth Sciences.

[16]  Wei Xu,et al.  Constructing the Early Mesozoic Gangdese Crust in Southern Tibet by Hornblende-dominated Magmatic Differentiation , 2019, Journal of Petrology.

[17]  Peter A. Cawood,et al.  Gangdese magmatism in southern Tibet and India–Asia convergence since 120 Ma , 2018, Special Publications.

[18]  L. Jolivet,et al.  Emplacement of metamorphic core complexes and associated geothermal systems controlled by slab dynamics , 2018, Earth and Planetary Science Letters.

[19]  Yulin Deng,et al.  Composition and age of Jurassic diabase dikes in the Xiongcun porphyry copper–gold district, southern margin of the Lhasa terrane, Tibet, China: Petrogenesis and tectonic setting , 2018 .

[20]  L. Ding,et al.  Early Jurassic high‐Mg andesites in the Quxu area, southern Lhasa terrane: Implications for magma evolution related to a slab rollback of the Neo‐Tethyan Ocean , 2018, Geological Journal.

[21]  L. Ding,et al.  Early Jurassic highly fractioned rhyolites and associated sedimentary rocks in southern Tibet: constraints on the early evolution of the Neo-Tethyan Ocean , 2018, International Journal of Earth Sciences.

[22]  L. Ding,et al.  Sequence and petrogenesis of the Jurassic volcanic rocks (Yeba Formation) in the Gangdese arc, southern Tibet: Implications for the Neo-Tethyan subduction , 2018, Lithos.

[23]  Z. Yi,et al.  Late Triassic intra-oceanic arc system within Neotethys: Evidence from cumulate appinite in the Gangdese belt, southern Tibet , 2018, Lithosphere.

[24]  Yulin Deng,et al.  Detrital zircon geochronology and geochemistry of Jurassic sandstones in the Xiongcun district, southern Lhasa subterrane, Tibet, China: implications for provenance and tectonic setting , 2018, Geological Magazine.

[25]  A. Harris,et al.  Geology and Geochronology of the Golpu Porphyry and Wafi Epithermal Deposit, Morobe Province, Papua New Guinea , 2018 .

[26]  Guangming Li,et al.  Late Triassic sedimentary records in the northern Tethyan Himalaya: Tectonic link with Greater India , 2018 .

[27]  Dong Liu,et al.  Geochronology and geochemistry of the Early Jurassic Yeba Formation volcanic rocks in southern Tibet: Initiation of back-arc rifting and crustal accretion in the southern Lhasa Terrane , 2017 .

[28]  L. Ding,et al.  Petrogenesis of Middle–Late Triassic volcanic rocks from the Gangdese belt, southern Lhasa terrane: Implications for early subduction of Neo-Tethyan oceanic lithosphere , 2016 .

[29]  S. Kodaira,et al.  Advent of Continents: A New Hypothesis , 2016, Scientific Reports.

[30]  E. Garzanti,et al.  The timing of India-Asia collision onset – Facts, theories, controversies , 2016 .

[31]  L. Ding,et al.  Late Triassic paleogeographic reconstruction along the Neo–Tethyan Ocean margins, southern Tibet , 2016 .

[32]  B. John,et al.  “Fingerprinting” tectono-magmatic provenance using trace elements in igneous zircon , 2015, Contributions to Mineralogy and Petrology.

[33]  F. Ding,et al.  Geological characteristics and genesis of the Jurassic No. I porphyry Cu–Au deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet , 2015 .

[34]  Yongjun Lu,et al.  Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen , 2015 .

[35]  D. Wyman,et al.  Late Cretaceous back‐arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr‐Nd‐Hf‐O isotopic evidence from Dagze diabases , 2015 .

[36]  S. Wilde,et al.  Geochronology and geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc , 2014 .

[37]  I. Uysal,et al.  Geochemical fingerprints of Late Triassic calc-alkaline lamprophyres from the Eastern Pontides, NE Turkey: A key to understanding lamprophyre formation in a subduction-related environment , 2014 .

[38]  Fu-Yuan Wu,et al.  Zedong terrane revisited: An intra-oceanic arc within Neo-Tethys or a part of the Asian active continental margin? , 2014 .

[39]  F. Ding,et al.  U-Pb and Re-Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC , 2014 .

[40]  Y. Kato,et al.  High-Mg Adakite and Low-Ca Boninite from a Bonin Fore-arc Seamount: Implications for the Reaction between Slab Melts and Depleted Mantle , 2013 .

[41]  Z. Hou,et al.  The origin and pre-Cenozoic evolution of the Tibetan Plateau , 2013 .

[42]  I. Metcalfe Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys , 2013 .

[43]  Fu-Yuan Wu,et al.  Identification of Early Carboniferous Granitoids from Southern Tibet and Implications for Terrane Assembly Related to the Paleo-Tethyan Evolution , 2012, The Journal of Geology.

[44]  E. Todd,et al.  A variably enriched mantle wedge and contrasting melt types during arc stages following subduction initiation in Fiji and Tonga, southwest Pacific , 2012 .

[45]  K. Kiminami,et al.  K–Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene–Oligocene thermo-tectonic reactivation , 2011 .

[46]  Z. Hou,et al.  The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth , 2010 .

[47]  A. Zanchi,et al.  Opening of the Neo-Tethys Ocean and the Pangea B to Pangea A transformation during the Permian , 2009, GeoArabia.

[48]  Xiangzhen Xu,et al.  Ultramafic blocks in Sumdo region, Lhasa block, Eastern Tibet plateau: An ophiolite unit , 2009 .

[49]  Wei-Qiang Ji,et al.  Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet , 2009 .

[50]  P. Robinson,et al.  Discovery of an eclogite belt in the Lhasa block, Tibet: A new border for Paleo-Tethys? , 2009 .

[51]  F. Barra,et al.  Late Carboniferous porphyry copper mineralization at La Voluntad, Neuquén, Argentina: Constraints from Re–Os molybdenite dating , 2008 .

[52]  A. Kerr,et al.  Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram , 2007 .

[53]  I. Metcalfe Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context , 2006 .

[54]  J. Walshe,et al.  Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls , 2005 .

[55]  R. Stern,et al.  Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components , 2005 .

[56]  U. Schaltegger,et al.  The Composition of Zircon and Igneous and Metamorphic Petrogenesis , 2003 .

[57]  G. Stampfli,et al.  A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons , 2002 .

[58]  J. Malpas,et al.  Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet) , 2000 .

[59]  R. Shinjo,et al.  Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin , 2000 .

[60]  An Yin,et al.  Geologic Evolution of the Himalayan-Tibetan Orogen , 2000 .

[61]  S. Noble,et al.  Hf-Nd Element and Isotope Perspective on the Nature and Provenance of Mantle and Subduction Components in Western Pacific Arc-Basin Systems , 1999 .

[62]  Amos Nur,et al.  The formation of Mount Etna as the consequence of slab rollback , 1999, Nature.

[63]  R. Shinjo,et al.  Geochemical and Sr‐Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin , 1999 .

[64]  J. Hawkins The Geology of the Lau Basin , 1995 .

[65]  A. Robertson,et al.  The Dras arc Complex: lithofacies and reconstruction of a Late Cretaceous oceanic volcanic arc in the Indus Suture Zone, Ladakh Himalaya , 1994 .

[66]  S. Eggins,et al.  High field strength and transition element systematics in island arc and back-arc basin basalts: Evidence for multi-phase melt extraction and a depleted mantle wedge , 1993 .

[67]  D. K. McDaniel,et al.  Geochemical approaches to sedimentation, provenance, and tectonics , 1993 .

[68]  R. Shail,et al.  Geochemistry and provenance of Rhenohercynian synorogenic sandstones: implications for tectonic environment discrimination , 1991, Geological Society, London, Special Publications.

[69]  K. Condie Geochemical changes in baslts and andesites across the Archean-Proterozoic boundary: Identification and significance , 1989 .

[70]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[71]  K. Crook,et al.  Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins , 1986 .

[72]  W. Dickinson Interpreting Provenance Relations from Detrital Modes of Sandstones , 1985 .

[73]  A. Şengör The Cimmeride Orogenic System and the Tectonics of Eurasia , 1984 .

[74]  John W. Shervais,et al.  Ti-V plots and the petrogenesis of modern and ophiolitic lavas , 1982 .

[75]  J. Winchester,et al.  Geochemical magma type discrimination: application to altered and metamorphosed basic igneous rocks , 1976 .

[76]  A. Mitchell Metallogenic Belts and Angle of Dip of Benioff Zones , 1973 .