Incremental learning optimization on knowledge discovery in dynamic business intelligent systems

As business information quickly varies with time, the extraction of knowledge from the related dynamically changing database is vital for business decision making. For an incremental learning optimization on knowledge discovery, a new incremental matrix describes the changes of the system. An optimization incremental algorithm induces interesting knowledge when the object set varies over time. Experimental results validate the feasibility of the incremental learning optimization.

[1]  Zdzisław Pawlak,et al.  Algorithm for inductive learning , 1986 .

[2]  Da Ruan,et al.  E-Service Intelligence , 2007 .

[3]  Wojciech Ziarko,et al.  DATA‐BASED ACQUISITION AND INCREMENTAL MODIFICATION OF CLASSIFICATION RULES , 1995, Comput. Intell..

[4]  Yiyu Yao,et al.  Three-way decisions with probabilistic rough sets , 2010, Inf. Sci..

[5]  Dun Liu,et al.  AN PROBABILISTIC ROUGH SET APPROACH FOR INCREMENTAL LEARNING KNOWLEDGE ON THE CHANGE OF ATTRIBUTES , 2010 .

[6]  Weibin Liu,et al.  Research on the approach of dynamically maintenance of approximations in rough set theory while attribute values coarsening and refining , 2009, 2009 IEEE International Conference on Granular Computing.

[7]  Yiyu Yao,et al.  Integrative Levels of Granularity , 2009, Human-Centric Information Processing Through Granular Modelling.

[8]  Panos M. Pardalos,et al.  Data Mining and Mathematical Programming , 2008 .

[9]  Zdzislaw Pawlak,et al.  Rough Set Theory and its Applications to Data Analysis , 1998, Cybern. Syst..

[10]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[11]  Yiyu Yao,et al.  A Partition Model of Granular Computing , 2004, Trans. Rough Sets.

[12]  Chenggang Bai,et al.  Cost-benefit factor analysis in e-services using bayesian networks , 2009, Expert Syst. Appl..

[13]  Da Ruan,et al.  An Incremental Approach for Inducing Knowledge from Dynamic Information Systems , 2009, Fundam. Informaticae.

[14]  Witold Pedrycz,et al.  Positive approximation: An accelerator for attribute reduction in rough set theory , 2010, Artif. Intell..

[15]  W. Scott Spangler,et al.  The integration of business intelligence and knowledge management , 2002, IBM Syst. J..

[16]  Michael C. Fu,et al.  Dynamic sample budget allocation in model-based optimization , 2011, J. Glob. Optim..

[17]  Tong Lingyun,et al.  Incremental learning of decision rules based on rough set theory , 2002, Proceedings of the 4th World Congress on Intelligent Control and Automation (Cat. No.02EX527).

[18]  Andrzej Bargiela,et al.  Human-Centric Information Processing Through Granular Modelling , 2009, Human-Centric Information Processing Through Granular Modelling.

[19]  Jie Lu,et al.  Fuzzy bilevel programming with multiple objectives and cooperative multiple followers , 2010, J. Glob. Optim..

[20]  Shaojie Qiao,et al.  A rough set based dynamic maintenance approach for approximations in coarsening and refining attribute values , 2010, Int. J. Intell. Syst..

[21]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[22]  Panos M. Pardalos,et al.  Handbook of Multicriteria Analysis , 2010 .

[23]  Francisco Herrera,et al.  Combining Numerical and Linguistic Information in Group Decision Making , 1998, Inf. Sci..

[24]  Jie Lu,et al.  Decision Making in Multi-Issue e-Market Auction Using Fuzzy Techniques and Negotiable Attitudes , 2008, J. Theor. Appl. Electron. Commer. Res..

[25]  Jie Lu,et al.  Life-event modelling framework for e-government integration , 2010, Electron. Gov. an Int. J..

[26]  Yiyu Yao,et al.  A Decision Theoretic Framework for Approximating Concepts , 1992, Int. J. Man Mach. Stud..

[27]  Panos M. Pardalos,et al.  A multicriteria approach for rating the credit risk of financial institutions , 2009, Comput. Manag. Sci..

[28]  Geert Wets,et al.  A rough sets based characteristic relation approach for dynamic attribute generalization in data mining , 2007, Knowl. Based Syst..

[29]  Shusaku Tsumoto Extraction of Experts' Decision Process from Clinical Databases Using Rough Set Model , 1997, PKDD.

[30]  Chien-Chung Chan,et al.  A Rough Set Approach to Attribute Generalization in Data Mining , 1998, Inf. Sci..

[31]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[32]  Giovanni Fasano,et al.  Dynamic analysis for the selection of parameters and initial population, in particle swarm optimization , 2010, J. Glob. Optim..

[33]  Dun Liu,et al.  An approach for inducing interesting incremental knowledge based on the change of attribute values , 2009, 2009 IEEE International Conference on Granular Computing.

[34]  Jie Lu,et al.  Decision Making in Multi-Issue e-Market Auction Using Fuzzy Attitudes , 2008 .

[35]  Tianrui Li,et al.  APPROACHES TO INCREMENTAL LEARNING KNOWLEDGE BASED ON THE CHANGES OF ATTRIBUTES' VALUES , 2009 .

[36]  Shusaku Tsumoto,et al.  Accuracy and Coverage in Rough Set Rule Induction , 2002, Rough Sets and Current Trends in Computing.

[37]  Chenggang Bai,et al.  E-Service Cost Benefit Evaluation and Analysis , 2007, E-Service Intelligence.

[38]  Roman Slowinski,et al.  Incremental Induction of Decision Rules from Dominance-based Rough Approximations , 2003, RSKD.

[39]  Guoyin Wang,et al.  RRIA: A Rough Set and Rule Tree Based Incremental Knowledge Acquisition Algorithm , 2003, Fundam. Informaticae.

[40]  Guoyin Wang,et al.  Incremental Attribute Reduction Based on Elementary Sets , 2005, RSFDGrC.