Soliton-Mediated electron Pairing

We study electron-electron pairing in an one-dimensional model lattice system embedded into a three-dimensional environment. The electron pair potential is lowered by a single, localized lattice deformation. Such a deformation is related to solitons moving along the lattice. Yet the exact form and the time evolution of the lattice excitation are of secondary relevance as the electron pair is stable for sufficiently wide deformations which propagate on molecular time scales, e.g. velocity of sound ≪ electron velocity. The spatial structure of the pair potential and the electron-electron wave function bring a mechanism of pairing different from the exchange of phonons between the electrons and the lattice which leads to Cooper pairs, and different also from the formation of bipolarons.

[1]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[2]  Manuel G. Velarde,et al.  Effect of anharmonicity on charge transport in hydrogen-bonded systems , 2006 .

[3]  C. Christov,et al.  Dissipative solitons , 1995 .

[4]  David Emin,et al.  Icosahedral Boron‐Rich Solids , 1987 .

[5]  G. V. Chester,et al.  Solid State Physics , 2000 .

[6]  L. Cooper Bound electron pairs in a degenerate Fermi gas , 1956 .

[7]  J. Ranninger,et al.  Theory of bipolarons and bipolaronic bands , 1981 .

[8]  Claudio Grimaldi,et al.  Nonadiabatic theory of the superconducting state , 2002 .

[9]  T. Holstein,et al.  Studies of polaron motion: Part II. The “small” polaron , 1959 .

[10]  Peeters,et al.  Large bipolarons in two and three dimensions. , 1991, Physical review. B, Condensed matter.

[11]  Emin,et al.  Formation of a large singlet bipolaron: Application to high-temperature bipolaronic superconductivity. , 1989, Physical review. B, Condensed matter.

[12]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[13]  H. Fröhlich Electrons in lattice fields , 1954 .

[14]  Helmut Eschrig,et al.  Microscopic theory of superconductivity , 1969 .

[15]  N. Zabusky,et al.  Interaction of "Solitons" in a Collisionless Plasma and the Recurrence of Initial States , 1965 .

[16]  W. Visscher,et al.  Lattice Thermal Conductivity in Disordered Harmonic and Anharmonic Crystal Models , 1967 .

[17]  Werner Ebeling,et al.  Dissipative solitons and Complex currents in Active Lattices , 2006, Int. J. Bifurc. Chaos.

[18]  Hideo Kanazawa,et al.  On the Interaction of Electrons with Lattice Vibrations , 1953 .

[19]  J. Bednorz,et al.  Possible High T c Superconductivity in the BaL a-C u-0 System , 2022 .

[20]  Werner Ebeling,et al.  Anharmonicity and its significance to non-Ohmic electric conduction. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  G. Grimvall,et al.  The electron-phonon interaction in metals , 1981 .

[22]  K. Müller,et al.  Possible highTc superconductivity in the Ba−La−Cu−O system , 1986 .

[23]  M. R. Schafroth,et al.  Superconductivity of a Charged Ideal Bose Gas , 1955 .

[24]  Alexandre S. Alexandrov,et al.  Polaron dynamics and bipolaron condensation in cuprates , 2000 .

[25]  Werner Ebeling,et al.  On soliton-Mediated Fast Electric conduction in a Nonlinear Lattice with Morse Interactions , 2006, Int. J. Bifurc. Chaos.

[26]  Werner Ebeling,et al.  Nonlinear excitations and electric transport in dissipative Morse-Toda lattices , 2006 .

[27]  H. Fröhlich,et al.  Theory of the superconducting state. I. The ground state at the absolute zero of temperature , 1950 .

[28]  Werner Ebeling,et al.  On the Possibility of Electric conduction Mediated by dissipative solitons , 2005, Int. J. Bifurc. Chaos.

[29]  戸田 盛和 Theory of nonlinear lattices , 1981 .