Large deformation shape uncertainty quantification in acoustic scattering
暂无分享,去创建一个
Ralf Hiptmair | Christoph Schwab | Claudia Schillings | Laura Scarabosio | R. Hiptmair | C. Schwab | L. Scarabosio | C. Schillings
[1] C. Schwab,et al. Electromagnetic wave scattering by random surfaces: Shape holomorphy , 2017 .
[2] Helmut Harbrecht,et al. First order second moment analysis for stochastic interface problems based on low-rank approximation , 2013 .
[3] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[4] Reinhold Schneider,et al. Sparse second moment analysis for elliptic problems in stochastic domains , 2008, Numerische Mathematik.
[5] R. DeVore,et al. Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .
[6] Nicolas Moës,et al. An extended stochastic finite element method for solving stochastic partial differential equations on random domains , 2008 .
[7] Claudio Canuto,et al. A fictitious domain approach to the numerical solution of PDEs in stochastic domains , 2007, Numerische Mathematik.
[8] Helmut Harbrecht,et al. Analysis of the domain mapping method for elliptic diffusion problems on random domains , 2016, Numerische Mathematik.
[9] R. Tempone,et al. Stochastic Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients: A Numerical Comparison , 2011 .
[10] N. Levenberg,et al. Function theory in several complex variables , 2001 .
[11] Thomas Gerstner,et al. Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.
[12] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations , 2000 .
[13] L. Grafakos. Classical and modern Fourier analysis , 2003 .
[14] F. Nobile,et al. Analytic regularity and collocation approximation for PDEs with random domain deformations , 2014 .
[15] J. Nédélec. Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .
[16] Helmut Harbrecht,et al. Computing quantities of interest for random domains with second order shape sensitivity analysis , 2015 .
[17] Michael Griebel,et al. On tensor product approximation of analytic functions , 2016, J. Approx. Theory.
[18] R. Kress,et al. Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .
[19] Moulay Abdellah Chkifa. On the Lebesgue constant of Leja sequences for the complex unit disk and of their real projection , 2013, J. Approx. Theory.
[20] Albert Cohen,et al. Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs , 2015 .
[21] Robert N. Gantner,et al. A Generic C++ Library for Multilevel Quasi-Monte Carlo , 2016, PASC.
[22] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[23] Jean-Pierre Berenger,et al. A perfectly matched layer for the absorption of electromagnetic waves , 1994 .
[24] Jens Markus Melenk,et al. Optimal a priori estimates for higher order finite elements for elliptic interface problems , 2010 .
[25] Daniel M. Tartakovsky,et al. Stochastic analysis of transport in tubes with rough walls , 2006, J. Comput. Phys..
[26] Dongbin Xiu,et al. High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..
[27] Pingwen Zhang,et al. Moving mesh methods in multiple dimensions based on harmonic maps , 2001 .
[28] Christoph Schwab,et al. Computational Higher Order Quasi-Monte Carlo Integration , 2014, MCQMC.
[29] S. Osher,et al. Level set methods: an overview and some recent results , 2001 .
[30] Helmut Harbrecht Mathematisches. Numerical Solution of Elliptic Diffusion Problems on Random Domains , 2015 .
[31] Laura Scarabosio,et al. Shape uncertainty quantification for scattering transmission problems , 2016 .
[32] C. Schwab,et al. Sparsity in Bayesian inversion of parametric operator equations , 2014 .
[33] Josef Dick,et al. Multilevel higher-order quasi-Monte Carlo Bayesian estimation , 2016, 1611.08324.
[34] Albert Cohen,et al. Convergence Rates of Best N-term Galerkin Approximations for a Class of Elliptic sPDEs , 2010, Found. Comput. Math..
[35] R. DeVore,et al. ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .
[36] Matti Lassas,et al. On the existence and convergence of the solution of PML equations , 1998, Computing.
[37] Albert Cohen,et al. High-Dimensional Adaptive Sparse Polynomial Interpolation and Applications to Parametric PDEs , 2013, Foundations of Computational Mathematics.
[38] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[39] Daniel M. Tartakovsky,et al. Numerical Methods for Differential Equations in Random Domains , 2006, SIAM J. Sci. Comput..
[40] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[41] Endre Süli,et al. The Adaptive Computation of Far-Field Patterns by A Posteriori Error Estimation of Linear Functionals , 1998 .
[42] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[43] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[44] Claude Jeffrey Gittelson,et al. Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs* , 2011, Acta Numerica.
[45] Claude Jeffrey Gittelson,et al. Adaptive stochastic Galerkin FEM , 2014 .
[46] Fabio Nobile,et al. A stochastic collocation method for the second order wave equation with a discontinuous random speed , 2013, Numerische Mathematik.
[47] Fabio Nobile,et al. Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations , 2013, Comput. Math. Appl..
[48] Peter Monk,et al. The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..
[49] R. Hiptmair,et al. Trefftz Approximations: A New Framework for Nonreflecting Boundary Conditions , 2016, IEEE Transactions on Magnetics.
[50] C. Schwab,et al. Sparsity in Bayesian inversion of parametric operator equations , 2013 .
[51] G. Allaire,et al. A level-set method for shape optimization , 2002 .
[52] Jean-Paul Calvi,et al. Lagrange interpolation at real projections of Leja sequences for the unit disk , 2011 .
[53] Christoph Schwab,et al. Sparse Tensor Discretization of Elliptic sPDEs , 2009, SIAM J. Sci. Comput..
[54] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[55] Christoph Schwab,et al. Sparse, adaptive Smolyak quadratures for Bayesian inverse problems , 2013 .