Bounding the diameter of distance-regular graphs

LetG be a connected distance-regular graph with valencyk>2 and diameterd, but not a complete multipartite graph. Suppose thatθ is an eigenvalue ofG with multiplicitym and thatθ≠±k. We prove that bothd andk are bounded by functions ofm. This implies that, ifm>1 is given, there are only finitely many connected, co-connected distance-regular graphs with an eigenvalue of multiplicitym.