DECIDING THE DIMENSION OF EFFECTIVE DIMENSION REDUCTION SPACE FOR FUNCTIONAL AND HIGH-DIMENSIONAL DATA
暂无分享,去创建一个
Tailen Hsing | Yehua Li | T. Hsing | Yehua Li
[1] T. Tony Cai,et al. Prediction in functional linear regression , 2006 .
[2] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[3] Hans Henrik Thodberg,et al. A review of Bayesian neural networks with an application to near infrared spectroscopy , 1996, IEEE Trans. Neural Networks.
[4] T. Hsing,et al. An RKHS formulation of the inverse regression dimension-reduction problem , 2009, 0904.0076.
[5] H. Muller,et al. Generalized functional linear models , 2005, math/0505638.
[6] Peng Zeng,et al. An integral transform method for estimating the central mean and central subspaces , 2010, J. Multivar. Anal..
[7] Ker-Chau Li,et al. Sliced Inverse Regression for Dimension Reduction , 1991 .
[8] P. Hall,et al. On properties of functional principal components analysis , 2006 .
[9] P. Sarda,et al. Smoothing splines estimators for functional linear regression , 2009, 0902.4344.
[10] S. Weisberg,et al. Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .
[11] P. Sarda,et al. SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .
[12] L. Ferré,et al. Functional sliced inverse regression analysis , 2003 .
[13] James R. Schott,et al. Determining the Dimensionality in Sliced Inverse Regression , 1994 .
[14] Gareth M. James,et al. Functional Adaptive Model Estimation , 2005 .
[15] Yehua Li. A Note on Hilbertian Elliptically Contoured Distributions , 2007 .
[16] Peng Zeng,et al. RSIR: regularized sliced inverse regression for motif discovery , 2005, Bioinform..
[17] Ulrich Stadtmüller,et al. Generalized functional linear models , 2005 .
[18] Yu Zhu,et al. Fourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression , 2006 .
[19] J. Dauxois,et al. Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .
[20] H. Tong,et al. An adaptive estimation of dimension reduction space, with discussion , 2002 .
[21] C. Mercier. Reply to the paper , 1978 .
[22] Jin-Ting Zhang,et al. Statistical inferences for functional data , 2007, 0708.2207.
[23] G. Simons,et al. On the theory of elliptically contoured distributions , 1981 .
[24] H. Cardot,et al. Estimation in generalized linear models for functional data via penalized likelihood , 2005 .
[25] Chong Gu. Smoothing Spline Anova Models , 2002 .
[26] R. Cook. Regression Graphics , 1994 .
[27] M. L. Eaton,et al. The asymptotic distribution of singular values with applications to canonical correlations and correspondence analysis , 1994 .
[28] Anestis Antoniadis,et al. Dimension reduction in functional regression with applications , 2006, Comput. Stat. Data Anal..
[29] Sushant Sachdeva,et al. Dimension Reduction , 2008, Encyclopedia of GIS.
[30] R. Cook,et al. A NOTE ON SMOOTHED FUNCTIONAL INVERSE REGRESSION , 2007 .
[31] Jianqing Fan,et al. Test of Significance When Data Are Curves , 1998 .
[32] M. C. Spruill,et al. Asymptotic Distribution of Coordinates on High Dimensional Spheres , 2007 .
[33] P. Hall,et al. Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.