DECIDING THE DIMENSION OF EFFECTIVE DIMENSION REDUCTION SPACE FOR FUNCTIONAL AND HIGH-DIMENSIONAL DATA

In this paper, we consider regression models with a Hilbert-space-valued predictor and a scalar response, where the response depends on the predictor only through a finite number of projections. The linear subspace spanned by these projections is called the effective dimension reduction (EDR) space. To determine the dimensionality of the EDR space, we focus on the leading principal component scores of the predictor, and propose two sequential χ 2 testing procedures under the assumption that the predictor has an elliptically contoured distribution. We further extend these procedures and introduce a test that simultaneously takes into account a large number of principal component scores. The proposed procedures are supported by theory, validated by simulation studies, and illustrated by a real-data example. Our methods and theory are applicable to functional data and high-dimensional multivariate data.

[1]  T. Tony Cai,et al.  Prediction in functional linear regression , 2006 .

[2]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[3]  Hans Henrik Thodberg,et al.  A review of Bayesian neural networks with an application to near infrared spectroscopy , 1996, IEEE Trans. Neural Networks.

[4]  T. Hsing,et al.  An RKHS formulation of the inverse regression dimension-reduction problem , 2009, 0904.0076.

[5]  H. Muller,et al.  Generalized functional linear models , 2005, math/0505638.

[6]  Peng Zeng,et al.  An integral transform method for estimating the central mean and central subspaces , 2010, J. Multivar. Anal..

[7]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[8]  P. Hall,et al.  On properties of functional principal components analysis , 2006 .

[9]  P. Sarda,et al.  Smoothing splines estimators for functional linear regression , 2009, 0902.4344.

[10]  S. Weisberg,et al.  Comments on "Sliced inverse regression for dimension reduction" by K. C. Li , 1991 .

[11]  P. Sarda,et al.  SPLINE ESTIMATORS FOR THE FUNCTIONAL LINEAR MODEL , 2003 .

[12]  L. Ferré,et al.  Functional sliced inverse regression analysis , 2003 .

[13]  James R. Schott,et al.  Determining the Dimensionality in Sliced Inverse Regression , 1994 .

[14]  Gareth M. James,et al.  Functional Adaptive Model Estimation , 2005 .

[15]  Yehua Li A Note on Hilbertian Elliptically Contoured Distributions , 2007 .

[16]  Peng Zeng,et al.  RSIR: regularized sliced inverse regression for motif discovery , 2005, Bioinform..

[17]  Ulrich Stadtmüller,et al.  Generalized functional linear models , 2005 .

[18]  Yu Zhu,et al.  Fourier Methods for Estimating the Central Subspace and the Central Mean Subspace in Regression , 2006 .

[19]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[20]  H. Tong,et al.  An adaptive estimation of dimension reduction space, with discussion , 2002 .

[21]  C. Mercier Reply to the paper , 1978 .

[22]  Jin-Ting Zhang,et al.  Statistical inferences for functional data , 2007, 0708.2207.

[23]  G. Simons,et al.  On the theory of elliptically contoured distributions , 1981 .

[24]  H. Cardot,et al.  Estimation in generalized linear models for functional data via penalized likelihood , 2005 .

[25]  Chong Gu Smoothing Spline Anova Models , 2002 .

[26]  R. Cook Regression Graphics , 1994 .

[27]  M. L. Eaton,et al.  The asymptotic distribution of singular values with applications to canonical correlations and correspondence analysis , 1994 .

[28]  Anestis Antoniadis,et al.  Dimension reduction in functional regression with applications , 2006, Comput. Stat. Data Anal..

[29]  Sushant Sachdeva,et al.  Dimension Reduction , 2008, Encyclopedia of GIS.

[30]  R. Cook,et al.  A NOTE ON SMOOTHED FUNCTIONAL INVERSE REGRESSION , 2007 .

[31]  Jianqing Fan,et al.  Test of Significance When Data Are Curves , 1998 .

[32]  M. C. Spruill,et al.  Asymptotic Distribution of Coordinates on High Dimensional Spheres , 2007 .

[33]  P. Hall,et al.  Properties of principal component methods for functional and longitudinal data analysis , 2006, math/0608022.