Weakly enforced essential boundary conditions for NURBS‐embedded and trimmed NURBS geometries on the basis of the finite cell method

Enforcing essential boundary conditions plays a central role in immersed boundary methods. Nitsche's idea has proven to be a reliable concept to satisfy weakly boundary and interface constraints. We formulate an extension of Nitsche's method for elasticity problems in the framework of higher order and higher continuity approximation schemes such as the B‐spline and non‐uniform rational basis spline version of the finite cell method or isogeometric analysis on trimmed geometries. Furthermore, we illustrate a significant improvement of the flexibility and applicability of this extension in the modeling process of complex 3D geometries. With several benchmark problems, we demonstrate the overall good convergence behavior of the proposed method and its good accuracy. We provide extensive studies on the stability of the method, its influence parameters and numerical properties, and a rearrangement of the numerical integration concept that in many cases reduces the numerical effort by a factor two. A newly composed boundary integration concept further enhances the modeling process and allows a flexible, discretization‐independent introduction of boundary conditions. Finally, we present our strategy in the framework of the modeling and isogeometric analysis process of trimmed non‐uniform rational basis spline geometries. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[2]  I. Babuska The Finite Element Method with Penalty , 1973 .

[3]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[4]  R. Brooks A Quantitative Theory of the Hounsfield Unit and Its Application to Dual Energy Scanning , 1977, Journal of computer assisted tomography.

[5]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[6]  Ivo Babuška,et al.  The p-Version of the Finite Element Method for Parabolic Equations. Part 1 , 1981 .

[7]  K. Höllig Finite element methods with B-splines , 1987 .

[8]  D. Tiba,et al.  An Embedding of Domains Approach in Free Boundary Problems andOptimal Design , 1995 .

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[11]  Satya N. Atluri,et al.  A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method , 1998 .

[12]  Ernst Rank,et al.  The p‐version of the finite element method for domains with corners and for infinite domains , 1990 .

[13]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[14]  G. Golub,et al.  Structured inverse eigenvalue problems , 2002, Acta Numerica.

[15]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[16]  P. Hansbo,et al.  CHALMERS FINITE ELEMENT CENTER Preprint 2000-06 Discontinuous Galerkin Methods for Incompressible and Nearly Incompressible Elasticity by Nitsche ’ s Method , 2007 .

[17]  Michael Griebel,et al.  A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .

[18]  Long Chen INTRODUCTION TO FINITE ELEMENT METHODS , 2003 .

[19]  J. Keyak,et al.  Comparison of in situ and in vitro CT scan-based finite element model predictions of proximal femoral fracture load. , 2003, Medical engineering & physics.

[20]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .

[21]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[22]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[23]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[24]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[25]  P. Oswald,et al.  A Particle-Partition of Unity Method Part VI: A p -robust Multilevel Solver , 2005 .

[26]  E. Rank,et al.  Organizing a p-Version Finite Element Computation by an Octree-Based Hierarchy , 2005 .

[27]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[28]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[29]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[30]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[31]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[32]  Rainald Löhner,et al.  Adaptive Embedded/Immersed Unstructured Grid Techniques , 2007 .

[33]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[34]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[35]  Ernst Rank,et al.  Finite cell method , 2007 .

[36]  L. Joskowicz,et al.  A CT-based high-order finite element analysis of the human proximal femur compared to in-vitro experiments. , 2007, Journal of biomechanical engineering.

[37]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[38]  Michael E. Mortenson,et al.  Geometric Modeling , 2008, Encyclopedia of GIS.

[39]  W. Wall,et al.  An eXtended Finite Element Method/Lagrange multiplier based approach for fluid-structure interaction , 2008 .

[40]  Zdenek Horak,et al.  Comparison of an inhomogeneous orthotropic and isotropic material models used for FE analyses. , 2008, Medical engineering & physics.

[41]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[42]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[43]  P. J. Pahl,et al.  An extended QR‐solver for large profiled matrices , 2009 .

[44]  Zohar Yosibash,et al.  Validation of subject-specific automated p-FE analysis of the proximal femur. , 2009, Journal of biomechanics.

[45]  T. Hughes,et al.  Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes , 2010 .

[46]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[47]  J. Dolbow,et al.  Imposing Dirichlet boundary conditions with Nitsche's method and spline‐based finite elements , 2010 .

[48]  Alexander Düster,et al.  Non-standard bone simulation: interactive numerical analysis by computational steering , 2011, Comput. Vis. Sci..

[49]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[50]  D. Schillinger,et al.  An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry , 2011 .

[51]  M. Krafczyk,et al.  Fast kd‐tree‐based hierarchical radiosity for radiative heat transport problems , 2011 .

[52]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[53]  Ernst Rank,et al.  An efficient integration technique for the voxel‐based finite cell method , 2012 .

[54]  Ernst Rank,et al.  Geometric modeling, isogeometric analysis and the finite cell method , 2012 .

[55]  Ernst Rank,et al.  The hp‐d‐adaptive finite cell method for geometrically nonlinear problems of solid mechanics , 2012 .

[56]  Ralf-Peter Mundani,et al.  A Framework for Parallel Numerical Simulations on Multi-Scale Geometries , 2012, 2012 11th International Symposium on Parallel and Distributed Computing.

[57]  Ernst Rank,et al.  The finite cell method for bone simulations: verification and validation , 2012, Biomechanics and modeling in mechanobiology.

[58]  Ernst Rank,et al.  A Parallel High-Order Fictitious Domain Approach for Biomechanical Applications , 2012, 2012 11th International Symposium on Parallel and Distributed Computing.

[59]  Ernst Rank,et al.  The Finite Cell Method for linear thermoelasticity , 2012, Comput. Math. Appl..

[60]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[61]  Y. Bazilevs,et al.  Small and large deformation analysis with the p- and B-spline versions of the Finite Cell Method , 2012 .

[62]  Roland Wüchner,et al.  Isogeometric analysis of trimmed NURBS geometries , 2012 .

[63]  P. N. Godbole Introduction to Finite Element Methods , 2013 .