Chromatic Coding from Cone-type Unselective Circuits in the Mouse Retina

[1]  Shansup Chen,et al.  A color coding amacrine cell may provide a “Blue–Off” signal in a mammalian retina , 2012, Nature Neuroscience.

[2]  A. Sher,et al.  A non-canonical pathway for mammalian blue-green color vision , 2012, Nature Neuroscience.

[3]  L. Lagnado,et al.  Encoding of Luminance and Contrast by Linear and Nonlinear Synapses in the Retina , 2012, Neuron.

[4]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[5]  Jonathan B. Demb,et al.  Spectral and Temporal Sensitivity of Cone-Mediated Responses in Mouse Retinal Ganglion Cells , 2011, The Journal of Neuroscience.

[6]  Thomas Euler,et al.  Bulk electroporation and population calcium imaging in the adult mammalian retina. , 2011, Journal of neurophysiology.

[7]  Tobias Breuninger,et al.  Chromatic Bipolar Cell Pathways in the Mouse Retina , 2011, The Journal of Neuroscience.

[8]  Jay Neitz,et al.  The genetics of normal and defective color vision , 2011, Vision Research.

[9]  Rebecca K. Chance,et al.  A mouse M-opsin monochromat: Retinal cone photoreceptors have increased M-opsin expression when S-opsin is knocked out , 2011, Vision Research.

[10]  D. Dacey,et al.  Horizontal Cell Feedback without Cone Type-Selective Inhibition Mediates “Red–Green” Color Opponency in Midget Ganglion Cells of the Primate Retina , 2011, The Journal of Neuroscience.

[11]  S. Haverkamp,et al.  Bipolar cell pathways for color vision in non-primate dichromats , 2010, Visual Neuroscience.

[12]  T. M. Esdaille,et al.  Dark Light, Rod Saturation, and the Absolute and Incremental Sensitivity of Mouse Cone Vision , 2010, The Journal of Neuroscience.

[13]  Timothy A. Machado,et al.  Functional connectivity in the retina at the resolution of photoreceptors , 2010, Nature.

[14]  Marla B Feller,et al.  Two-photon targeted recording of GFP-expressing neurons for light responses and live-cell imaging in the mouse retina , 2010, Nature Protocols.

[15]  Robert Shapley,et al.  Vision: Gene therapy in colour , 2009, Nature.

[16]  Jay Neitz,et al.  Gene therapy for red-green colour blindness in adult primates , 2009, Nature.

[17]  C. M. Davenport,et al.  Parallel ON and OFF Cone Bipolar Inputs Establish Spatially Coextensive Receptive Field Structure of Blue-Yellow Ganglion Cells in Primate Retina , 2009, The Journal of Neuroscience.

[18]  Tobias Breuninger,et al.  Eyecup scope—optical recordings of light stimulus-evoked fluorescence signals in the retina , 2009, Pflügers Archiv - European Journal of Physiology.

[19]  P. Sterling,et al.  Physiology and Morphology of Color-Opponent Ganglion Cells in a Retina Expressing a Dual Gradient of S and M Opsins , 2009, The Journal of Neuroscience.

[20]  Jay Neitz,et al.  Colour Vision: The Wonder of Hue , 2008, Current Biology.

[21]  Walter Makous,et al.  Comment on "Emergence of Novel Color Vision in Mice Engineered to Express a Human Cone Photopigment" , 2007, Science.

[22]  G. H. Jacobs,et al.  Emergence of Novel Color Vision in Mice Engineered to Express a Human Cone Photopigment , 2007, Science.

[23]  Bin Lin,et al.  Populations of wide‐field amacrine cells in the mouse retina , 2006, The Journal of comparative neurology.

[24]  Paul R. Martin,et al.  Specificity of M and L Cone Inputs to Receptive Fields in the Parvocellular Pathway: Random Wiring with Functional Bias , 2006, The Journal of Neuroscience.

[25]  Paul R. Martin,et al.  Random Wiring in the Midget Pathway of Primate Retina , 2006, The Journal of Neuroscience.

[26]  Edward N. Pugh,et al.  Physiological Features of the S- and M-cone Photoreceptors of Wild-type Mice from Single-cell Recordings , 2006, The Journal of general physiology.

[27]  U. Grünert,et al.  Synaptic connectivity in the midget‐parvocellular pathway of primate central retina , 2006, The Journal of comparative neurology.

[28]  P. Gouras,et al.  Cone and rod inputs to murine retinal ganglion cells: Evidence of cone opsin specific channels , 2005, Visual Neuroscience.

[29]  L. Peichl Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle? , 2005, The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology.

[30]  Nicholas Oesch,et al.  Direction-Selective Dendritic Action Potentials in Rabbit Retina , 2005, Neuron.

[31]  H. Wässle,et al.  The Primordial, Blue-Cone Color System of the Mouse Retina , 2005, The Journal of Neuroscience.

[32]  Kenneth R Alexander,et al.  Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  P. Gouras,et al.  Why do mice have ultra-violet vision? , 2004, Experimental eye research.

[34]  G. H. Jacobs,et al.  Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse , 2004, Vision Research.

[35]  J. Verweij,et al.  L and M Cone Contributions to the Midget and Parasol Ganglion Cell Receptive Fields of Macaque Monkey Retina , 2004, The Journal of Neuroscience.

[36]  Gerald H. Jacobs,et al.  Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  David Williams,et al.  Organization of the Human Trichromatic Cone Mosaic , 2003, The Journal of Neuroscience.

[38]  Wenzhi Sun,et al.  Large‐scale morphological survey of mouse retinal ganglion cells , 2002, The Journal of comparative neurology.

[39]  J. Neitz,et al.  The uncommon retina of the common house mouse , 2001, Trends in Neurosciences.

[40]  Barry B. Lee,et al.  Chromatic sensitivity of ganglion cells in the peripheral primate retina , 2001, Nature.

[41]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[42]  M. Antoch,et al.  The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.

[43]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[44]  J. B. Demb,et al.  Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field , 1999, The Journal of Neuroscience.

[45]  K. K. Ghosh,et al.  Synaptic input to small bistratified (blue‐ON) ganglion cells in the retina of a New World monkey, the marmoset Callithrix jacchus , 1999, The Journal of comparative neurology.

[46]  J. Nathans The Evolution and Physiology of Human Color Vision Insights from Molecular Genetic Studies of Visual Pigments , 1999, Neuron.

[47]  W R Taylor,et al.  TTX attenuates surround inhibition in rabbit retinal ganglion cells , 1999, Visual Neuroscience.

[48]  David J. Calkins,et al.  Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina , 1998, The Journal of Neuroscience.

[49]  B. B. Lee,et al.  Receptive field structure in the primate retina , 1996, Vision Research.

[50]  Á. Szél,et al.  Two different visual pigments in one retinal cone cell , 1994, Neuron.

[51]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[52]  Barry B. Lee,et al.  The 'blue-on' opponent pathway in primate retina originates from a distinct bistratified ganglion cell type , 1994, Nature.

[53]  G. Aguirre,et al.  Unique topographic separation of two spectral classes of cones in the mouse retina , 1992, The Journal of comparative neurology.

[54]  S. Bloomfield,et al.  Relationship between receptive and dendritic field size of amacrine cells in the rabbit retina. , 1992, Journal of neurophysiology.

[55]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[56]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[57]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[58]  B. Boycott,et al.  Cortical magnification factor and the ganglion cell density of the primate retina , 1989, Nature.

[59]  A. Cowey,et al.  The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors , 1985, Vision Research.

[60]  W. Paulus,et al.  A new concept of retinal colour coding , 1983, Vision Research.

[61]  H. Spekreijse,et al.  The “silent substitution” method in visual research , 1982, Vision Research.

[62]  E. Zrenner,et al.  Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells , 1981, Vision Research.

[63]  D. Hubel,et al.  Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. , 1966, Journal of neurophysiology.

[64]  K. Naka,et al.  S‐potentials from luminosity units in the retina of fish (Cyprinidae) , 1966, The Journal of physiology.

[65]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[66]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[67]  K. D. De Valois,et al.  A multi-stage color model. , 1993, Vision research.

[68]  B Drum,et al.  Hue signals from short- and middle-wavelength-sensitive cones. , 1989, Journal of the Optical Society of America. A, Optics and image science.