Combinatorial Optimization, Cross-Entropy, Ants and Rare Events

We show how to solve network combinatorial optimization problems using a randomized algorithm based on the cross-entropy method. The proposed algorithm employs an auxiliary random mechanism, like a Markov chain, which converts the original deterministic network into an associated stochastic one, called the associated stochastic network (ASN). Depending on a particular problem, we introduce the randomness in ASN by making either the nodes or the edges of the network random. Each iteration of the randomized algorithm based on the ASN involves the following two phases: 1. Generation of trajectories using the random mechanism and calculation of the associated path (objective functions) and some related quantities, such as rare-event probabilities. 2. Updating the parameters associated with the random mechanism, like the probability matrix P of the Markov chain, on the basis of the data collected at first phase. We show that asymptotically the matrix P converges to a degenerated one P* d in the sense that at each row of the MC P* d only a single element equals unity, while the remaining elements in each row are zeros. Moreover, the unity elements of each row uniquely define the optimal solution. We also show numericaly that for a finite sample the algorithm converges with very high probability to a very small subset of the optimal values. We finally show that the proposed method can also be used for noisy networks, namely where the deterministic edge distances in the network are replaced by random variables with unknown expected values. Supporting numerical results are given as well. Our numerical studies suggest that the proposed algorithm typically has polynomial complexity in the size of the network.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[3]  S. M. Ali,et al.  A General Class of Coefficients of Divergence of One Distribution from Another , 1966 .

[4]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[5]  Alastair J. Walker,et al.  An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.

[6]  N. L. Johnson,et al.  Urn models and their application : an approach to modern discrete probability theory , 1978 .

[7]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[8]  Richard M. Karp,et al.  Monte-Carlo algorithms for enumeration and reliability problems , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[9]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[10]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[11]  Martin E. Dyer,et al.  A random polynomial-time algorithm for approximating the volume of convex bodies , 1991, JACM.

[12]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[13]  J. N. Kapur,et al.  Entropy Optimization Principles and Their Applications , 1992 .

[14]  J. N. Kapur,et al.  Entropy optimization principles with applications , 1992 .

[15]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[16]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[17]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[18]  László Lovász,et al.  Randomized algorithms in combinatorial optimization , 1993, Combinatorial Optimization.

[19]  Wan Ahmad Tajuddin Seeking Global Minima , 1994 .

[20]  Robert L. Smith,et al.  Simulated annealing for constrained global optimization , 1994, J. Glob. Optim..

[21]  C. Geyer,et al.  Annealing Markov chain Monte Carlo with applications to ancestral inference , 1995 .

[22]  B. Fox,et al.  Probabilistic Search with Overrides , 1995 .

[23]  S. Andradóttir A method for discrete stochastic optimization , 1995 .

[24]  Giovanni Righini,et al.  Heuristics from Nature for Hard Combinatorial Optimization Problems , 1996 .

[25]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[26]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[27]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[28]  Sigrún Andradóttir,et al.  A Global Search Method for Discrete Stochastic Optimization , 1996, SIAM J. Optim..

[29]  Georg Ch. Pflug,et al.  Simulated Annealing for noisy cost functions , 1996, J. Glob. Optim..

[30]  Léon J. M. Rothkrantz,et al.  Ant-Based Load Balancing in Telecommunications Networks , 1996, Adapt. Behav..

[31]  J. K. Lenstra,et al.  Local Search in Combinatorial Optimisation. , 1997 .

[32]  M Dorigo,et al.  Ant colonies for the travelling salesman problem. , 1997, Bio Systems.

[33]  Gerasimos Potamianos,et al.  Stochastic approximation algorithms for partition function estimation of Gibbs random fields , 1997, IEEE Trans. Inf. Theory.

[34]  R. Rubinstein,et al.  Quick estimation of rare events in stochastic networks , 1997 .

[35]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[36]  Marco Dorigo,et al.  AntNet: Distributed Stigmergetic Control for Communications Networks , 1998, J. Artif. Intell. Res..

[37]  Thomas Stützle,et al.  ACO algorithms for the quadratic assignment problem , 1999 .

[38]  Luca Maria Gambardella,et al.  Ant Algorithms for Discrete Optimization , 1999, Artificial Life.

[39]  Israel A. Wagner,et al.  Distributed covering by ant-robots using evaporating traces , 1999, IEEE Trans. Robotics Autom..

[40]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[41]  H. Cohn,et al.  Simulated Annealing: Searching for an Optimal Temperature Schedule , 1999, SIAM J. Optim..

[42]  Leyuan Shi,et al.  New parallel randomized algorithms for the traveling salesman problem , 1999, Comput. Oper. Res..

[43]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[44]  Panos M. Pardalos,et al.  Introduction to Global Optimization , 2000, Introduction to Global Optimization.

[45]  Walter J. Gutjahr,et al.  A Graph-based Ant System and its convergence , 2000, Future Gener. Comput. Syst..

[46]  Yu-Chi Ho,et al.  Stochastic Comparison Algorithm for Discrete Optimization with Estimation , 1999, SIAM J. Optim..

[47]  Israel A. Wagner,et al.  ANTS: Agents on Networks, Trees, and Subgraphs , 2000, Future Gener. Comput. Syst..

[48]  Leyuan Shi,et al.  Nested Partitions Method for Global Optimization , 2000, Oper. Res..