Adapting Bobbert-Vlieger model to spectroscopic ellipsometry of gold nanoparticles with bio-organic shells.

We investigate spectroscopic imaging ellipsometry for monitoring biomolecules at surfaces of nanoparticles. For the modeling of polarimetric light scattering off surface-adsorbed core-shell nanoparticles, we employ an extension of the exact solution for the scattering by particles near a substrate presented by Bobbert and Vlieger, which offers insight beyond that of the Maxwell-Garnett effective medium approximation. Varying thickness and refractive index of a model bio-organic shell results in systematic and characteristic changes in spectroscopic parameters [Formula: see text] and [Formula: see text]. The salient features and trends in modeled spectra are in qualitative agreement with experimental data for antibody immobilization and fibronectin biorecognition at surfaces of gold nanoparticles on a silicon substrate, but achieving a full quantitative agreement will require including additional effects, such as nanoparticle-substrate interactions, into the model.

[1]  T. Oates,et al.  Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry , 2011 .

[2]  T. Germer Light scattering by slightly nonspherical particles on surfaces. , 2002, Optics letters.

[3]  T. Sobrino,et al.  A higher body temperature is associated with haemorrhagic transformation in patients with acute stroke untreated with recombinant tissue-type plasminogen activator (rtPA). , 2012, Clinical science.

[4]  Yia-Chung Chang,et al.  Ellipsometry study on gold-nanoparticle-coated gold thin film for biosensing application , 2011, Biomedical optics express.

[5]  T. Xia,et al.  Understanding biophysicochemical interactions at the nano-bio interface. , 2009, Nature materials.

[6]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[7]  P. D. Beule Surface scattering of core–shell particles with anisotropic shell , 2014 .

[8]  Caterina Minelli,et al.  Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement , 2013 .

[9]  J. Shieh,et al.  Using spectroscopic ellipsometry to characterize and apply the optical constants of hollow gold nanoparticles. , 2009, ACS nano.

[10]  Gorden Videen,et al.  Light scattering from a sphere on or near a surface , 1991 .

[11]  H. Weyl,et al.  Ausbreitung elektromagnetischer Wellen über einem ebenen Leiter , 1919 .

[12]  T. D. Clark,et al.  Evaluating protocols and analytical methods for peptide adsorption experiments , 2013, Biointerphases.

[13]  T. D. Clark,et al.  Residue-dependent adsorption of model oligopeptides on gold. , 2013, Journal of the American Chemical Society.

[14]  A. Shard,et al.  Analysis of protein coatings on gold nanoparticles by XPS and liquid-based particle sizing techniques. , 2015, Biointerphases.

[15]  F. Rossi,et al.  Surface Analysis of Gold Nanoparticles Functionalized with Thiol-Modified Glucose SAMs for Biosensor Applications , 2016, Front. Chem..

[16]  J. M. Sturm,et al.  Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS. , 2016, The journal of physical chemistry. C, Nanomaterials and interfaces.

[17]  J. Vlieger,et al.  Light scattering by a sphere on a substrate , 1986 .

[18]  Hassan M E Azzazy,et al.  In vitro diagnostic prospects of nanoparticles. , 2009, Clinica chimica acta; international journal of clinical chemistry.

[19]  T. Germer SCATMECH: Polarized Light Scattering C++ Class Library , 2000 .

[20]  Vadim A. Markel Introduction to the Maxwell Garnett approximation: tutorial. , 2016, Journal of the Optical Society of America. A, Optics, image science, and vision.

[21]  K. Dawson,et al.  In situ characterization of nanoparticle biomolecular interactions in complex biological media by flow cytometry , 2016, Nature Communications.

[22]  R. Barer,et al.  Refractive Index of Concentrated Protein Solutions , 1954, Nature.

[23]  George W Mulholland,et al.  Polarized light scattering by dielectric and metallic spheres on silicon wafers. , 2002, Applied optics.

[24]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[25]  R. Greef,et al.  Light reflection from a substrate sparsely seeded with spheres - comparison with an ellipsometric experiment , 1986 .

[26]  Yan Tang,et al.  Tunability of the refractive index of gold nanoparticle dispersions. , 2007, Nano letters.

[27]  B. Drévillon,et al.  Muller matrix measurements of small spherical particles deposited on a c-Si wafer. , 2002, Applied optics.

[28]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[29]  M. A. Moro,et al.  The Prediction of Malignant Cerebral Infarction by Molecular Brain Barrier Disruption Markers , 2005, Stroke.

[30]  J. Ramsden,et al.  Optical properties of protein monolayers during assembly , 1998 .

[31]  Joonyoung Park,et al.  Nanoparticle characterization: state of the art, challenges, and emerging technologies. , 2013, Molecular pharmaceutics.

[32]  Yia-Chung Chang,et al.  Efficient Simulation for Light Scattering from Plasmonic Core-Shell Nanospheres on a Substrate for Biosensing , 2014, Plasmonics.

[33]  K. Midwood,et al.  Plasma and cellular fibronectin: distinct and independent functions during tissue repair , 2011, Fibrogenesis & tissue repair.

[34]  Yia-Chung Chang,et al.  Enhanced localized plasmonic detections using partially-embedded gold nanoparticles and ellipsometric measurements , 2012, Biomedical optics express.

[35]  Pedro V. Baptista,et al.  Noble Metal Nanoparticles for Biosensing Applications , 2012, Sensors.