Quantum subspace alignment for domain adaptation

Domain adaptation (DA) is used for adaptively obtaining labels of an unprocessed data set with a given related, but different labelled data set. Subspace alignment (SA), a representative DA algorithm, attempts to find a linear transformation to align the subspaces of the two different data sets. The classifier trained on the aligned labelled data set can be transferred to the unlabelled data set to predict the target labels. In this paper, two quantum versions of the SA are proposed to implement the DA procedure on quantum devices. One method, the quantum subspace alignment algorithm (QSA), achieves quadratic speedup in the number and dimension of given samples. The other method, the variational quantum subspace alignment algorithm (VQSA), can be implemented on the near term quantum devices through a variational hybrid quantum-classical procedure. The results of the numerical experiments on different types of datasets demonstrate that the VQSA can achieve competitive performance compared with the corresponding classical algorithm.

[1]  Seth Lloyd,et al.  Quantum singular-value decomposition of nonsparse low-rank matrices , 2016, 1607.05404.

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[4]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[5]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[6]  Kate Saenko,et al.  Deep CORAL: Correlation Alignment for Deep Domain Adaptation , 2016, ECCV Workshops.

[7]  Scott Aaronson,et al.  The computational complexity of linear optics , 2010, STOC '11.

[8]  Tobias J. Osborne,et al.  Training deep quantum neural networks , 2020, Nature Communications.

[9]  DuchiJohn,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011 .

[10]  W. Marsden I and J , 2012 .

[11]  Gilles Brassard,et al.  Quantum speed-up for unsupervised learning , 2012, Machine Learning.

[12]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[13]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[14]  Trevor Darrell,et al.  What you saw is not what you get: Domain adaptation using asymmetric kernel transforms , 2011, CVPR 2011.

[15]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[16]  Vishal M. Patel,et al.  Unsupervised domain adaptation using parallel transport on Grassmann manifold , 2014, IEEE Winter Conference on Applications of Computer Vision.

[17]  Ying Liu,et al.  Quantum algorithm for support matrix machines , 2017 .

[18]  Masoud Mohseni,et al.  Quantum support vector machine for big feature and big data classification , 2013, Physical review letters.

[19]  QingPing Zhou,et al.  Measurement-device-independent quantum key distribution with uncharacterized coherent sources , 2019, Quantum Information Processing.

[20]  October I Physical Review Letters , 2022 .

[21]  Hao Hu,et al.  Image classification based on quantum K-Nearest-Neighbor algorithm , 2018, Quantum Information Processing.

[22]  Rama Chellappa,et al.  Domain adaptation for object recognition: An unsupervised approach , 2011, 2011 International Conference on Computer Vision.

[23]  Seth Lloyd,et al.  Quantum Generative Adversarial Learning. , 2018, Physical review letters.

[24]  Kate Saenko,et al.  Subspace Distribution Alignment for Unsupervised Domain Adaptation , 2015, BMVC.

[25]  Walter Vinci,et al.  Quantum variational autoencoder , 2018, Quantum Science and Technology.

[26]  M. Schuld,et al.  Prediction by linear regression on a quantum computer , 2016, 1601.07823.

[27]  Luming Duan,et al.  Quantum discriminant analysis for dimensionality reduction and classification , 2015, 1510.00113.

[28]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[29]  Changpeng Shao,et al.  Quantum Algorithms to Matrix Multiplication , 2018, 1803.01601.

[30]  Yuan Shi,et al.  Geodesic flow kernel for unsupervised domain adaptation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Shu-Hao Wu,et al.  Quantum generative adversarial learning in a superconducting quantum circuit , 2018, Science Advances.

[32]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[33]  Tinne Tuytelaars,et al.  Unsupervised Visual Domain Adaptation Using Subspace Alignment , 2013, 2013 IEEE International Conference on Computer Vision.

[34]  Nathan Killoran,et al.  Transfer learning in hybrid classical-quantum neural networks , 2019, Quantum.

[35]  Patrick J. Coles,et al.  Variational quantum state diagonalization , 2018, npj Quantum Information.

[36]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[37]  Hartmut Neven,et al.  Classification with Quantum Neural Networks on Near Term Processors , 2018, 1802.06002.

[38]  José David Martín-Guerrero,et al.  Quantum autoencoders via quantum adders with genetic algorithms , 2017, Quantum Science and Technology.

[39]  Jiangping Hu,et al.  Learning and Inference on Generative Adversarial Quantum Circuits , 2018, Physical Review A.

[40]  Simone Severini,et al.  Adversarial quantum circuit learning for pure state approximation , 2018, New Journal of Physics.

[41]  Shenggen Zheng,et al.  Quantum generative adversarial network for generating discrete data , 2018 .

[42]  E. Anderson The Species Problem in Iris , 1936 .

[43]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[44]  S. Woods,et al.  The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. S. 211-215 , 2005 .

[45]  Lorien Y. Pratt,et al.  Discriminability-Based Transfer between Neural Networks , 1992, NIPS.

[46]  Gregory Gutin,et al.  Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP , 2001, Discret. Appl. Math..

[47]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[48]  Robert Gardner,et al.  Quantum generalisation of feedforward neural networks , 2016, npj Quantum Information.

[49]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[50]  Trevor Darrell,et al.  Adapting Visual Category Models to New Domains , 2010, ECCV.

[51]  Kristen Grauman,et al.  Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation , 2013, ICML.

[52]  S. Lloyd,et al.  Quantum principal component analysis , 2013, Nature Physics.

[53]  Chufan Lyu,et al.  Quantum locally linear embedding , 2019 .

[54]  Nathan Killoran,et al.  Quantum generative adversarial networks , 2018, Physical Review A.

[55]  Daniel Marcu,et al.  Domain Adaptation for Statistical Classifiers , 2006, J. Artif. Intell. Res..

[56]  KapoorAshish,et al.  Quantum algorithms for nearest-neighbor methods for supervised and unsupervised learning , 2015 .

[57]  Ashish Kapoor,et al.  Quantum Nearest-Neighbor Algorithms for Machine Learning , 2014, 1401.2142.

[58]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[59]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[60]  Seth Lloyd,et al.  Quantum algorithm for data fitting. , 2012, Physical review letters.

[61]  Ryan LaRose,et al.  Variational Quantum Linear Solver: A Hybrid Algorithm for Linear Systems , 2019, 1909.05820.

[62]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[63]  S. Lloyd,et al.  Quantum algorithms for supervised and unsupervised machine learning , 2013, 1307.0411.

[64]  Rama Chellappa,et al.  Subspace Interpolation via Dictionary Learning for Unsupervised Domain Adaptation , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[65]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[66]  Zachary Cope,et al.  The London , 1963 .

[67]  Xi He,et al.  Quantum correlation alignment for unsupervised domain adaptation , 2020, Physical Review A.

[68]  Ashish Kapoor,et al.  Quantum deep learning , 2014, Quantum Inf. Comput..

[69]  Ivor W. Tsang,et al.  Domain Transfer SVM for video concept detection , 2009, CVPR 2009.