Reliable Computation of High-Pressure Solid−Fluid Equilibrium

The calculation of solid−fluid equilibrium at high pressure is important in the modeling and design of processes that use supercritical fluids to selectively extract solid solutes. We describe here a new method for reliably computing solid−fluid equilibrium at constant temperature and pressure or for verifying the nonexistence of a solid−fluid equilibrium state at the given conditions. Difficulties that must be considered include the possibility of multiple roots to the equifugacity conditions and multiple stationary points in the tangent plane distance analysis done for purposes of determining global phase stability. Somewhat surprisingly, these issues are often not dealt with by those who measure, model, and compute high-pressure solid−fluid equilibria, leading in some cases to incorrect or misinterpreted results. It is shown here how these difficulties can be addressed by using a methodology based on interval analysis, which can provide a mathematical and computational guarantee that the solid−fluid eq...

[1]  K. Shing,et al.  Multiphase behavior of binary and ternary systems of heavy aromatic hydrocarbons with supercritical carbon dioxide , 1992 .

[2]  M. Stadtherr,et al.  Enhanced Interval Analysis for Phase Stability: Cubic Equation of State Models , 1998 .

[3]  Combined Local and Global Approach to Reliable Computation of Phase Equilibria , 1997 .

[4]  George Jackson,et al.  New reference equation of state for associating liquids , 1990 .

[5]  M. McHugh,et al.  Three-phase solid-liquid-gas equilibria for three carbon dioxide-hydrocarbon solid systems, two ethane-hydrocarbon solid systems, and two ethylene-hydrocarbon solid systems , 1984 .

[6]  M. Stadtherr,et al.  Interval Analysis for Thermodynamic Calculations in Process Design: A Novel and Completely Reliable Approach , 1999 .

[7]  Joan F. Brennecke,et al.  Phase equilibria for supercritical fluid process design , 1989 .

[8]  Robert W. Maier,et al.  Reliable computation of homogeneous azeotropes , 1998 .

[9]  Mark A. Stadtherr,et al.  Reliable prediction of phase stability using an interval Newton method , 1996 .

[10]  G. Brunner,et al.  Solubilities of the xanthines caffeine, theophylline and theobromine in supercritical carbon dioxide , 1994 .

[11]  Chenyi Hu,et al.  Algorithm 737: INTLIB—a portable Fortran 77 interval standard-function library , 1994, TOMS.

[12]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[13]  G. S. Varadarajan,et al.  Solubilities of theobromine and caffeine in supercritical carbon dioxide: correlation with density-based models , 1991 .

[14]  Ralf Dohrn,et al.  High-pressure fluid-phase equilibria: Experimental methods and systems investigated (1988–1993) , 1995 .

[15]  R. Baker Kearfott,et al.  Algorithm 681: INTBIS, a portable interval Newton/bisection package , 1990, TOMS.

[16]  M. Huron,et al.  New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures☆ , 1979 .

[17]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[18]  R. Reid,et al.  Thermodynamic stability criterion for pure substances and mixtures , 1974 .

[19]  P. H. van Konynenburg,et al.  Critical lines and phase equilibria in binary van der Waals mixtures , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[20]  Mark A. Stadtherr,et al.  NONLINEAR PARAMETER ESTIMATION USING INTERVAL ANALYSIS , 1998 .

[21]  G. Soave Equilibrium constants from a modified Redlich-Kwong equation of state , 1972 .

[22]  L. E. Baker,et al.  Gibbs energy analysis of phase equilibria , 1982 .

[23]  Lorenz T. Biegler,et al.  Iterative linear programming strategies for constrained simulation , 1991 .

[24]  M. Stadtherr,et al.  Reliable Phase Stability Analysis for Excess Gibbs Energy Models , 2000 .

[25]  W. Seider,et al.  Homotopy-continuation method for stability analysis in the global minimization of the Gibbs free energy , 1995 .

[26]  J. Jonas,et al.  NMR study of solid naphthalene solubilities in supercritical carbon dioxide near the upper critical end point , 1986 .

[27]  C. Eckert,et al.  Solubilities of hydrocarbon solids in supercritical fluids. The augmented van der Waals treatment , 1982 .

[28]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[29]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[30]  J. Brennecke NEW APPLICATIONS OF SUPERCRITICAL FLUIDS , 1996 .

[31]  Mark A. McHugh,et al.  Supercritical Fluid Extraction: Principles and Practice , 1986 .

[32]  Glenn Thomas Hong,et al.  Binary phase diagrams from a cubic equation of state , 1981 .

[33]  J. A. Conesa,et al.  Comments on the problematic nature of the calculation of solid-liquid equilibrium , 1997 .

[34]  Sunwook Kim,et al.  Modeling Supercritical Mixtures: How Predictive Is It? , 1989 .

[35]  A. Neumaier Interval methods for systems of equations , 1990 .

[36]  A. D. King,et al.  Solubility of Naphthalene in Compressed Methane, Ethylene, and Carbon Dioxide. Evidence for a Gas‐Phase Complex between Naphthalene and Carbon Dioxide , 1966 .

[37]  Global Stability Analysis and Calculation of Liquid−Liquid Equilibrium in Multicomponent Mixtures† , 1996 .

[38]  Christodoulos A. Floudas,et al.  Global optimization for the phase stability problem , 1995 .

[39]  K. Kobe The properties of gases and liquids , 1959 .

[40]  M. Michelsen The isothermal flash problem. Part I. Stability , 1982 .

[41]  M. Stadtherr,et al.  Robust process simulation using interval methods , 1996 .

[42]  George Jackson,et al.  SAFT: Equation-of-state solution model for associating fluids , 1989 .

[43]  Eldon Hansen,et al.  Global optimization using interval analysis , 1992, Pure and applied mathematics.

[44]  H. K. Cammenga,et al.  Phase transitions and thermodynamic properties of anhydrous caffeine , 1979 .

[45]  Phase equilibrium calculations and three-dimensional computer graphics representation , 1989 .

[46]  J. Wisniak,et al.  Prediction of gas–solid equilibrium using equations of state , 1998 .

[47]  David Shan-Hill Wong,et al.  A theoretically correct mixing rule for cubic equations of state , 1992 .

[48]  C. Wai,et al.  Extraction of metal ions from liquid and solid materials by supercritical carbon dioxide , 1992 .

[49]  Mark A. Stadtherr,et al.  Reliable computation of phase stability using interval analysis : Cubic equation of state models , 1998 .

[50]  Michael E. Paulaitis,et al.  Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide , 1980 .

[51]  Robert C. Reid,et al.  Solubility of monofunctional organic solids in chemically diverse supercritical fluids , 1986 .