The Pre‐Obduction to Post‐Obduction Evolution of the Sivas Ophiolite (Turkey) and Implications for the Precollisional History of Eastern Anatolia

The Anatolian block preserves remnants of Tethyan oceanic basins consumed by north dipping subduction zones until the Late Cretaceous prior to Paleogene collision. The Sivas Basin, which belongs to the Maastrichtian to Cenozoic Central Anatolian basins, is located in a key position limited to the north and the south by respectively the Pontides and Tauride ophiolitic bodies and to the west by the Kırşehir block. This study focuses on the southern margin of the Sivas Basin, where an obducted ophiolite is capped by Maastrichtian‐Paleocene sediments. We present new field observations, with U‐Pb zircon dating on magmatic rocks and geochemical analyses to (1) unravel the pre‐obduction nature and origin of the ophiolitic basement and (2) describe the post‐obduction tectonosedimentary evolution. The pre‐obduction evolution shows that (i) the Sivas ophiolite is characterized by serpentinized peridotites, with minor magmatic intrusions, (ii) the top of the serpentinized mantle is characterized by a cataclastic deformation with ophicalcites interpreted as an extensional detachment fault, (iii) the U‐Pb zircon dating of two magmatic intrusions yield age of 91.49 ± 0.8 Ma and 72.7 ± 0.5 Ma, and (iv) petrological and geochemical data show that the magmatic intrusions were affected by hydrothermal metamorphism. These data suggest that the Sivas ophiolite may have recorded forearc hyperextension in frame of a Late Cretaceous suprasubduction zone. The post‐obduction evolution is characterized by the deposition of a Maastrichtian‐Paleocene carbonate platform on the ophiolite, followed by clastic sediments containing reworked ophiolitic and Tauride Mesozoic clasts.

[1]  J. Ringenbach,et al.  Salt Tectonics in the Sivas Basin (Turkey): Seismic Analogues from Outcrops Seen on 3D Drone Images , 2019, 81st EAGE Conference and Exhibition 2019.

[2]  K. S. Kavak,et al.  Structure and kinematics of the Central Sivas Basin (Turkey): salt deposition and tectonics in an evolving fold-and-thrust belt , 2019, Special Publications.

[3]  D. Gürer,et al.  Diachronous demise of the Neotethys Ocean as a driver for non-cylindrical orogenesis in Anatolia , 2017, Tectonophysics.

[4]  K. S. Kavak,et al.  Geology of the Central Sivas Basin (Turkey) , 2018, Journal of Maps.

[5]  M. Darin,et al.  Rapid Late Eocene Exhumation of the Sivas Basin (Central Anatolia) Driven by Initial Arabia‐Eurasia Collision , 2018, Tectonics.

[6]  J. Ringenbach,et al.  Facies partitioning and stratal pattern in salt-controlled marine to continental mini-basins: Examples from the Late Oligocene to Early Miocene of the Sivas Basin, Turkey , 2018 .

[7]  C. Parat,et al.  Evidence of multiple evaporite recycling processes in a salt‐tectonic context, Sivas Basin, Turkey , 2018 .

[8]  F. Corfu,et al.  A long-lived Late Cretaceous–early Eocene extensional province in Anatolia? Structural evidence from the Ivriz Detachment, southern central Turkey , 2018 .

[9]  M. Anderson,et al.  Rapid fore-arc extension and detachment-mode spreading following subduction initiation , 2017 .

[10]  Étienne Legeay Géodynamique du bassin de Sivas (Turquie) : de la fermeture d’un domaine océanique à la mise en place d’un avant-pays salifère , 2017 .

[11]  J. Ringenbach,et al.  Tectono-stratigraphic evolution of salt-controlled minibasins in a fold and thrust belt, the Oligo-Miocene central Sivas Basin , 2017 .

[12]  D. Gürer,et al.  Paleomagnetic constraints on the timing and distribution of Cenozoic rotations in Central and Eastern Anatolia , 2017 .

[13]  Alexandre Pichat Dynamique des systèmes évaporitiques d’un bassin d’avant-pays salifère et processus diagénétiques associés au contexte halocinétique : exemple du bassin de Sivas en Turquie , 2017 .

[14]  A. Morris,et al.  Kinematics of Late Cretaceous subduction initiation in the Neo‐Tethys Ocean reconstructed from ophiolites of Turkey, Cyprus, and Syria , 2017 .

[15]  K. S. Kavak,et al.  Factors controlling stratal pattern and facies distribution of fluvio‐lacustrine sedimentation in the Sivas mini‐basins, Oligocene (Turkey) , 2017 .

[16]  K. S. Kavak,et al.  Geochemical characteristics of ophiolitic rocks from the southern margin of the Sivas basin and their implications for the Inner Tauride Ocean, Central-Eastern Turkey , 2017 .

[17]  F. Corfu,et al.  Kinematics of a former oceanic plate of the Neotethys revealed by deformation in the Ulukışla basin (Turkey) , 2016 .

[18]  J. Ringenbach,et al.  Diagenesis of Oligocene continental sandstones in salt-walled mini-basins—Sivas Basin, Turkey , 2016 .

[19]  K. S. Kavak,et al.  Minibasins and salt canopy in foreland fold‐and‐thrust belts: The central Sivas Basin, Turkey , 2016 .

[20]  L. Jolivet,et al.  Kinematic reconstructions and magmatic evolution illuminating crustal and mantle dynamics of the eastern Mediterranean region since the late Cretaceous , 2016 .

[21]  F. Corfu,et al.  Tectonic evolution and paleogeography of the Kırşehir Block and the Central Anatolian Ophiolites, Turkey , 2016 .

[22]  Charlie Kergaravat Dynamique de formation et de déformation de minibassins en contexte compressif : exemple du bassin de Sivas, Turquie Approche terrain et implications structurales multiéchelles , 2016 .

[23]  M. Sosson,et al.  From seafloor spreading to obduction: Jurassic–Cretaceous evolution of the northern branch of the Neotethys in the Northeastern Anatolian and Lesser Caucasus regions , 2015, Special Publications.

[24]  Charlotte Ribes Interaction entre la tectonique salifère et la sédimentation dans des mini-bassins : Exemple de l’Oligo-Miocène du bassin de Sivas, Turquie , 2015 .

[25]  J. Ringenbach,et al.  Fluvial sedimentation in a salt‐controlled mini‐basin: stratal patterns and facies assemblages, Sivas Basin, Turkey , 2015 .

[26]  P. Agard,et al.  Accretion, underplating and exhumation along a subduction interface: From subduction initiation to continental subduction (Tavşanlı zone, W. Turkey) , 2015 .

[27]  K. Hodges,et al.  Forearc hyperextension dismembered the south Tibetan ophiolites , 2015 .

[28]  C. Thieulot,et al.  Dynamics of intraoceanic subduction initiation: 2. Suprasubduction zone ophiolite formation and metamorphic sole exhumation in context of absolute plate motions , 2015 .

[29]  C. Thieulot,et al.  Dynamics of intraoceanic subduction initiation: 1. Oceanic detachment fault inversion and the formation of supra‐subduction zone ophiolites , 2015 .

[30]  A. Okay,et al.  Tectonic evolution of the southern margin of Laurasia in the Black Sea region , 2015 .

[31]  T. Hirata,et al.  Depletion and refertilization of the Tethyan oceanic upper mantle as revealed by the early Jurassic Refahiye ophiolite, NE Anatolia—Turkey , 2015 .

[32]  K. S. Kavak,et al.  Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic palaeogeographical evolution , 2015, International Journal of Earth Sciences.

[33]  R. Oberhänsli,et al.  Multistage growth of Fe–Mg–carpholite and Fe–Mg–chloritoid, from field evidence to thermodynamic modelling , 2014, Contributions to Mineralogy and Petrology.

[34]  M. G. Booth,et al.  Late Cretaceous to Late Eocene Hekimhan Basin (Central Eastern Turkey) as a supra-ophiolite sedimentary/magmatic basin related to the later stages of closure of Neotethys , 2014 .

[35]  H. Furnes,et al.  Ophiolites and Their Origins , 2014 .

[36]  B. Vrielynck,et al.  Salt tectonics in the Sivas basin (Turkey): Crossing salt walls and minibasins , 2014 .

[37]  T. Ustaömer,et al.  Subduction, ophiolite genesis and collision history of Tethys adjacent to the Eurasian continental margin: new evidence from the Eastern Pontides, Turkey , 2013 .

[38]  A. Şengör,et al.  Jurassic ophiolite formation and emplacement as backstop to a subduction-accretion complex in northeast Turkey, the Refahıye ophiolite, and relation to the Balkan ophiolites , 2013, American Journal of Science.

[39]  R. Oberhänsli,et al.  Neotethys closure history of Anatolia: insights from 40Ar–39Ar geochronology and P–T estimation in high‐pressure metasedimentary rocks , 2013 .

[40]  J. callot,et al.  Salt tectonics in the Sivas Basin, Turkey: outstanding seismic analogues from outcrops , 2013 .

[41]  U. Klötzli,et al.  U–Pb and 40Ar–39Ar geochronology of the ophiolites and granitoids from the Tauride belt: Implications for the evolution of the Inner Tauride suture , 2013 .

[42]  C. Langereis,et al.  Reconstructing the geometry of central Anatolia during the late cretaceous Large-scale cenozoic rotations and deformation between the Pontides and Taurides , 2013 .

[43]  A. Robertson,et al.  Late Palaeozoic–Cenozoic tectonic development of carbonate platform, margin and oceanic units in the Eastern Taurides, Turkey , 2013 .

[44]  E. Altunel,et al.  Paleoseismological investigations on a slow-moving active fault in central Anatolia, Tecer Fault, Sivas , 2013 .

[45]  Charlie Kergaravat,et al.  Salt tectonics in the Sivas basin, Turkey, mini basin development, halokinetic sequences, and fracturation. , 2013 .

[46]  Y. Lagabrielle,et al.  Ophicalcites from the northern Pyrenean belt: a field, petrographic and stable isotope study , 2013, International Journal of Earth Sciences.

[47]  T. Ustaömer,et al.  Overview of the Palaeozoic–Neogene evolution of Neotethys in the Eastern Mediterranean region (southern Turkey, Cyprus, Syria) , 2012 .

[48]  M. G. Booth,et al.  Two-stage development of the Late Cretaceous to Late Eocene Darende Basin: implications for closure of Neotethys in central eastern Anatolia (Turkey) , 2012 .

[49]  Cahit Dönmez,et al.  Geochemistry and tectonic significance of ophiolites along the İzmir–Ankara–Erzincan Suture Zone in northeastern Anatolia , 2012 .

[50]  A. Robertson,et al.  Late Devonian–Late Triassic sedimentary development of the central Taurides, S Turkey: Implications for the northern margin of Gondwana , 2012 .

[51]  S. Adamia,et al.  Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40Ar/39Ar dating , 2011 .

[52]  F. Neubauer,et al.  Early-Middle Jurassic intra-oceanic subduction in the İzmir-Ankara-Erzincan Ocean, Northern Turkey , 2011 .

[53]  A. Barnhoorn,et al.  Late Cretaceous extensional denudation along a marble detachment fault zone in the Kırşehir massif near Kaman, central Turkey , 2011 .

[54]  R. Oberhänsli,et al.  High‐pressure metasediments in central Turkey: Constraints on the Neotethyan closure history , 2010 .

[55]  V. Zaykov,et al.  The types and genesis of ophicalcites in Lower Devonian olistostromes at cobalt-bearing massive sulfide deposits in the West Magnitogorsk paleoisland arc (South Urals) , 2010 .

[56]  Nuretdin Kaymakçi,et al.  Late Cretaceous to Recent kinematics of SE Anatolia (Turkey) , 2010 .

[57]  T. Ustaömer,et al.  Late Palaeozoic-Early Cenozoic tectonic development of the Eastern Pontides (Artvin area), Turkey: stages of closure of Tethys along the southern margin of Eurasia , 2010 .

[58]  H. Furnes,et al.  Structure and geochemistry of Tethyan ophiolites and their petrogenesis in subduction rollback systems , 2009 .

[59]  G. Péron‐Pinvidic,et al.  The final rifting evolution at deep magma-poor passive margins from Iberia-Newfoundland: a new point of view , 2009 .

[60]  A. Robertson,et al.  Structural and sedimentary evidence from the northern margin of the Tauride platform in south central Turkey used to test alternative models of Tethys during Early Mesozoic time , 2009 .

[61]  Ender Sarifakioglu,et al.  Petrogenesis of the Refahiye Ophiolite and its Tectonic Significance for Neotethyan Ophiolites Along the İzmir-Ankara-Erzincan Suture Zone , 2009 .

[62]  R. Metcalf,et al.  Suprasubduction-zone ophiolites: Is there really an ophiolite conundrum? , 2008 .

[63]  J. Pearce Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust , 2008 .

[64]  A. Kerr,et al.  Classification of Altered Volcanic Island Arc Rocks using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram , 2007 .

[65]  H. Furnes,et al.  Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana , 2007 .

[66]  Aral I. Okay Demir Altiner A Condensed Mesozoic Succession North of İzmir: A Fragment of the Anatolide-Tauride Platform in the Bornova Flysch Zone , 2007 .

[67]  C. Teyssier,et al.  Yo-yo tectonics in a wrench zone, Central Anatolian fault zone, Turkey , 2007 .

[68]  D. Miller,et al.  Oceanic Core Complexes and Crustal Accretion at Slow-Spreading Ridges. Indications From IODP Expeditions 304-305 and Previous Ocean Drilling Results , 2006 .

[69]  J. Escartín,et al.  Modes of seafloor generation at a melt-poor ultraslow-spreading ridge , 2006 .

[70]  J. Chorowicz,et al.  Anatolian escape tectonics driven by Eocene crustal thickening and Neogene–Quaternary extensional collapse in the eastern Mediterranean region , 2006 .

[71]  O. Parlak,et al.  Origin and Tectonic Significance of the Metamorphic Sole and Isolated Dykes of the Divriği Ophiolite (Sivas, Turkey): Evidence for Slab Break-off prior to Ophiolite Emplacement , 2006 .

[72]  Şekil,et al.  The features of Gürlevik limestones and a new suggested name as Tecer formation , 2005 .

[73]  Michael A. Hamilton,et al.  Timing of high-grade metamorphism in central Turkey and the assembly of Anatolia , 2004, Journal of the Geological Society.

[74]  A. Robertson Development of concepts concerning the genesis and emplacement of Tethyan ophiolites in the Eastern Mediterranean and Oman regions , 2004 .

[75]  Julian A. Pearce,et al.  Supra-subduction zone ophiolites: The search for modern analogues , 2003 .

[76]  U. K. Tekin,et al.  Evidence for the Triassic rifting and opening of the Neotethyan Izmir-Ankara Ocean and discussion on the presence of Cimmerian events at the northernedge of the Tauride-Anatolide Platform, Turkey , 2003 .

[77]  A. Robertson Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region , 2002 .

[78]  T. Minshull,et al.  Evolution of magma-poor continental margins from rifting to seafloor spreading , 2001, Nature.

[79]  C. Teyssier,et al.  Metamorphism of the Central Anatolian Crystalline Complex, Turkey: influence of orogen‐normal collision vs. wrench‐dominated tectonics on P–T–t paths , 2001 .

[80]  A. Robertson,et al.  New sedimentological and structural data from the Ecemiş Fault Zone, southern Turkey: implications for its timing and offset and the Cenozoic tectonic escape of Anatolia , 2001, Journal of the Geological Society.

[81]  K. Dirik Neotectonic evolution of the northwestward arched segment of the Central Anatolian Fault Zone, Central Anatolia, Turkey , 2001 .

[82]  M. Lu,et al.  Formation and emplacement ages of the SSZ‐type Neotethyan ophiolites in Central Anatolia, Turkey: palaeotectonic implications , 2000 .

[83]  P. Thy,et al.  Structure and petrology of Tauride ophiolites and mafic dike intrusions (Turkey): Implications for the Neotethyan ocean , 1999 .

[84]  A. Koçyi̇ği̇t,et al.  A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey , 1998 .

[85]  A. Robinson Regional and Petroleum Geology of the Black Sea and Surrounding Region , 1997 .

[86]  K. S. Kavak,et al.  Tectonostratigraphy of the Southern Sivas Tertiary Basin (Central Turkey) and Comparison with Landsat MSS Imagery , 1997 .

[87]  A. Ansell The sea floor. An introduction to marine geology , 1997 .

[88]  W. Berger,et al.  The Sea Floor: An Introduction to Marine Geology , 2020 .

[89]  Haluk Temiz,et al.  Tectonics of the Sivas Basin: The Neogene Record of the Anatolian Accretion Along the Inner Tauric Suture , 1996 .

[90]  Haluk Temiz Tectonostratigraphy and Thrust Tectonics of the Central and Eastern Parts of the Sivas Tertiary Basin, Turkey , 1996 .

[91]  K. S. Kavak,et al.  Tectonic Setting and Evolution of the Sivas Basin, Central Anatolia, Turkey , 1996 .

[92]  J. Dixon,et al.  Alternative tectonic models for the Late Palaeozoic-Early Tertiary development of Tethys in the Eastern Mediterranean region , 1996, Geological Society, London, Special Publications.

[93]  A. Poisson,et al.  Tectonostratigraphy and kinematics of the eastern end of the Sivas Basin (central eastern Turkey): Implications for the so‐called ‘Anatolian block’ , 1993 .

[94]  D. Bideau,et al.  Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37′N and 16°52′N , 1992 .

[95]  A. Robertson,et al.  Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys , 1991 .

[96]  P. Turner,et al.  Tertiary evolution of the Sivas Basin, central Turkey , 1991 .

[97]  M. Yurdakul,et al.  Geology of the Sivas-Erzincan Tertiary Basin , 1990 .

[98]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[99]  P. Tricart,et al.  Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic imodel , 1987 .

[100]  Jean-Claude Sibuet,et al.  Geological evolution of the tethys belt from the atlantic to the pamirs since the LIAS , 1986 .

[101]  A. Şengör,et al.  Palaeotectonic evolution of the Tuzgölü basin complex, Central Turkey: sedimentary record of a Neo-Tethyan closure , 1984, Geological Society, London, Special Publications.

[102]  John W. Shervais,et al.  Ti-V plots and the petrogenesis of modern and ophiolitic lavas , 1982 .

[103]  Yuzuf Ziya Özkan BULLETIN OF THE MINERAL RESEARCH AND EXPLORATION INSTITUTE OF TURKEY , 1982 .

[104]  Yücel Yılmaz,et al.  Tethyan evolution of Turkey: A plate tectonic approach , 1981 .

[105]  David A. Wood,et al.  The application of a ThHfTa diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province , 1980 .

[106]  A. Saunders,et al.  Transverse geochemical variations across the Antarctic Peninsula: Implications for the genesis of calc-alkaline magmas , 1980 .

[107]  D. Graf,et al.  Sedimentary geology. , 1979, Science.

[108]  J. Pearce,et al.  Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks , 1979 .

[109]  J. Winchester,et al.  Geochemical discrimination of different magma series and their differentiation products using immobile elements , 1977 .

[110]  Necdet Karacabey Quelques Rudistes Provenant De La Region De Divriği (Turquie Orientale) , 1972 .

[111]  A. Uenal,et al.  Geology of the Beypinari-Karababa area (Sivas Province) , 1971 .

[112]  H. Thomas The Miocene Transgression , 1962, Nature.