Trapped ion chain as a neural network: error resistant quantum computation.

We demonstrate the possibility of realizing a neural network in a chain of trapped ions with induced long range interactions. Such models permit one to store information distributed over the whole system. The storage capacity of such a network, which depends on the phonon spectrum of the system, can be controlled by changing the external trapping potential. We analyze the implementation of error resistant universal quantum information processing in such systems.

[1]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[2]  H. Briegel,et al.  Quantum-information processing in disordered and complex quantum systems , 2005, quant-ph/0507172.

[3]  O. Gühne,et al.  03 21 7 2 3 M ar 2 00 6 Scalable multi-particle entanglement of trapped ions , 2006 .

[4]  M D Barrett,et al.  Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System , 2005, Science.

[5]  J. Twamley,et al.  Quantum computer using a trapped-ion spin molecule and microwave radiation , 2003, quant-ph/0310015.

[6]  E. Knill,et al.  Deterministic quantum teleportation of atomic qubits , 2004, Nature.

[7]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[8]  S. Fishman,et al.  Eigenmodes and thermodynamics of a Coulomb chain in a harmonic potential. , 2004, Physical review letters.

[9]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical review letters.

[10]  C. Wunderlich,et al.  Quantum Measurements and New Concepts for Experiments with Trapped Ions , 2003, quant-ph/0305129.

[11]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[12]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[13]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[14]  E. Farhi,et al.  Analog analogue of a digital quantum computation , 1996, quant-ph/9612026.

[15]  D. Deutsch,et al.  Universality in quantum computation , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[17]  F. Wilczek,et al.  Geometric Phases in Physics , 1989 .

[18]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[19]  Sompolinsky,et al.  Spin-glass models of neural networks. , 1985, Physical review. A, General physics.

[20]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[21]  J. W. Humberston Classical mechanics , 1980, Nature.