Observational Searches for Star-Forming Galaxies at z > 6

Abstract Although the universe at redshifts greater than six represents only the first one billion years (< 10%) of cosmic time, the dense nature of the early universe led to vigorous galaxy formation and evolution activity which we are only now starting to piece together. Technological improvements have, over only the past decade, allowed large samples of galaxies at such high redshifts to be collected, providing a glimpse into the epoch of formation of the first stars and galaxies. A wide variety of observational techniques have led to the discovery of thousands of galaxy candidates at z > 6, with spectroscopically confirmed galaxies out to nearly z = 9. Using these large samples, we have begun to gain a physical insight into the processes inherent in galaxy evolution at early times. In this review, I will discuss (i) the selection techniques for finding distant galaxies, including a summary of previous and ongoing ground and space-based searches, and spectroscopic follow-up efforts, (ii) insights into galaxy evolution gleaned from measures such as the rest-frame ultraviolet luminosity function, the stellar mass function, and galaxy star-formation rates, and (iii) the effect of galaxies on their surrounding environment, including the chemical enrichment of the universe, and the reionisation of the intergalactic medium. Finally, I conclude with prospects for future observational study of the distant universe, using a bevy of new state-of-the-art facilities coming online over the next decade and beyond.

[1]  Cambridge,et al.  ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .

[2]  The stellar mass density at z ~6 from Spitzer imaging of i'-drop galaxies , 2006, astro-ph/0607306.

[3]  Mark Lacy,et al.  The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.

[4]  J. Schaye,et al.  Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium , 2008, 0807.3963.

[5]  Michigan.,et al.  ZFOURGE/CANDELS: ON THE EVOLUTION OF M* GALAXY PROGENITORS FROM z = 3 TO 0.5 , 2014, 1412.3806.

[6]  M. Franx,et al.  ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.

[7]  D. Schaerer,et al.  The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.

[8]  Andrew R. Liddle,et al.  How many cosmological parameters , 2004, astro-ph/0401198.

[9]  R. Wechsler,et al.  CONNECTING REIONIZATION TO THE LOCAL UNIVERSE , 2008, 0812.3405.

[10]  The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey , 2006, astro-ph/0604554.

[11]  R. Bouwens,et al.  NOT IN OUR BACKYARD: SPECTROSCOPIC SUPPORT FOR THE CLASH z = 11 CANDIDATE MACS 0647-JD , 2015, 1502.05681.

[12]  Jason X. Prochaska,et al.  Probing the Interstellar Medium near Star-forming Regions with Gamma-Ray Burst Afterglow Spectroscopy: Gas, Metals, and Dust , 2007 .

[13]  NOAO,et al.  Color-selected galaxies at Z 6 in the great observatories origins deep survey , 2004 .

[14]  J. Dunlop,et al.  THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.

[15]  M. Franx,et al.  THE HST EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER , 2013, 1305.1931.

[16]  Peter Capak,et al.  Spectroscopic Confirmation of an Extreme Starburst at Redshift 4.547 , 2008, 0806.0657.

[17]  B. Ciardi,et al.  The dust mass in z > 6 normal star-forming galaxies , 2015, 1505.01841.

[18]  K. Nagamine,et al.  Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.

[19]  M. Rees,et al.  Pregalactic evolution in cosmologies with cold dark matter , 1986 .

[20]  M. Milosavljevic,et al.  Star formation in the first galaxies – II. Clustered star formation and the influence of metal line cooling , 2013, 1307.1982.

[21]  Piero Madau,et al.  COSMIC REIONIZATION AFTER PLANCK: COULD QUASARS DO IT ALL? , 2015, 1507.07678.

[22]  Maximilian Fabricius,et al.  THE HETDEX PILOT SURVEY. V. THE PHYSICAL ORIGIN OF Lyα EMITTERS PROBED BY NEAR-INFRARED SPECTROSCOPY , 2014, 1406.4503.

[23]  M. Franx,et al.  DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.

[24]  M. Boylan-Kolchin,et al.  Push it to the limit: Local Group constraints on high-redshift stellar mass functions for M⋆ ≥ 105 M⊙ , 2015, 1509.01250.

[25]  D. Schaerer,et al.  On the physical properties of z ≈ 6–8 galaxies , 2010, 1002.1090.

[26]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[27]  Z. Haiman,et al.  Evolution in the escape fraction of ionizing photons and the decline in strong Lyα emission from z > 6 galaxies , 2014, 1401.7676.

[28]  K. Shimasaku,et al.  THE FIRST SYSTEMATIC SURVEY FOR Lyα EMITTERS AT z = 7.3 WITH RED-SENSITIVE SUBARU/SUPRIME-CAM , 2011, 1112.3997.

[29]  L. Bradley,et al.  THE LUMINOSITY FUNCTION AT z ∼ 8 FROM 97 Y-BAND DROPOUTS: INFERENCES ABOUT REIONIZATION , 2014, 1402.4129.

[30]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[31]  H. Ferguson,et al.  The rising star formation histories of distant galaxies and implications for gas accretion with time , 2010, 1007.4554.

[32]  Ignasi Ribas,et al.  Pathways Towards Habitable Planets , 2010 .

[33]  J. Dunlop,et al.  THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.4819.

[34]  M. Dijkstra Lyα Emitting Galaxies as a Probe of Reionisation , 2014, Publications of the Astronomical Society of Australia.

[35]  B. O’Shea,et al.  PROBING THE ULTRAVIOLET LUMINOSITY FUNCTION OF THE EARLIEST GALAXIES WITH THE RENAISSANCE SIMULATIONS , 2015, 1503.01110.

[36]  R. Bouwens,et al.  SLOW EVOLUTION OF THE SPECIFIC STAR FORMATION RATE AT z > 2: THE IMPACT OF DUST, EMISSION LINES, AND A RISING STAR FORMATION HISTORY , 2012, 1208.4362.

[37]  R. Bouwens,et al.  CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.

[38]  O. Ilbert,et al.  Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission , 2015, Nature.

[39]  J. Dunlop,et al.  A critical analysis of the ultraviolet continuum slopes (β) of high-redshift galaxies: no evidence (yet) for extreme stellar populations at z > 6 , 2011, 1102.5005.

[40]  Kindler-Rohrborn,et al.  In press , 1994, Molecular carcinogenesis.

[41]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[42]  V. Wild,et al.  The UV continua and inferred stellar populations of galaxies at z ~7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign , 2012, 1212.0860.

[43]  Measuring the Cosmic Equation of State with Counts of Galaxies. , 2000, The Astrophysical journal.

[44]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[45]  S. M. Fall,et al.  LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.

[46]  R. Ellis,et al.  KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8 , 2011, 1107.1261.

[47]  J. P. U. Fynbo,et al.  Edinburgh Research Explorer Discovery of bright z 7 galaxies in the UltraVISTA survey , 2012 .

[48]  J. Dunlop,et al.  The luminosity function, halo masses and stellar masses of luminous Lyman-break galaxies at redshifts 5 < z < 6 , 2008, 0805.1335.

[49]  Hooshang Nayyeri,et al.  SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844–7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ∼ 7 GALAXIES , 2011, 1107.3159.

[50]  R. Somerville,et al.  Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.

[51]  M. Oguri,et al.  HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.

[52]  L. Cowie,et al.  Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift , 1998, Nature.

[53]  M. Dickinson,et al.  Cosmic Star-Formation History , 1996, 1403.0007.

[54]  V. A. Bruce,et al.  AN EXPONENTIAL DECLINE AT THE BRIGHT END OF THE z = 6 GALAXY LUMINOSITY FUNCTION , 2012, 1202.5330.

[55]  C. Conroy Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.

[56]  H. Rottgering,et al.  Identification of the brightest Lyα emitters at z = 6.6 : Implications for the evolution of the luminosity function in the reionization era , 2015, 1502.07355.

[57]  T. Lauer,et al.  A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.

[58]  R. Wechsler,et al.  THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.

[59]  B. Milvang-Jensen,et al.  Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7 , 2014, 1408.1420.

[60]  Possible Detection of Cosmological Reionization Sources , 2004, astro-ph/0405219.

[61]  P. Shapiro,et al.  On the use of Lyα emitters as probes of reionization , 2012, 1206.4028.

[62]  S. Majewski,et al.  A redshift limit for the faint blue galaxy population from deep U band imaging , 1990 .

[63]  R. Bouwens,et al.  PROBING THE DAWN OF GALAXIES AT z ∼ 9–12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA , 2013, 1301.6162.

[64]  K. Finlator,et al.  Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.

[65]  Richard S. Ellis,et al.  Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.

[66]  T. Budavari,et al.  The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.

[67]  Marijn Franx,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 5/14/03 THE REST-FRAME OPTICAL LUMINOSITY DENSITY, COLOR, AND STELLAR MASS DENSITY OF THE UNIVERSE FROM Z=0 TO Z=3 1 , 2003 .

[68]  Donald Hamilton,et al.  Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .

[69]  Volker Springel,et al.  SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.

[70]  A. Fontana,et al.  ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z ∼ 3–4: LOOKING FOR ANALOGS OF “STELLAR RE-IONIZERS” , 2012, 1201.5642.

[71]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[72]  J. Dunlop,et al.  The colour distribution of galaxies at redshift five , 2013, 1312.4975.

[73]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[74]  Stefano Casertano,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.

[75]  M. Pettini,et al.  Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.

[76]  B. Altieri,et al.  A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.

[77]  D. Croton,et al.  THE MID-LIFE CRISIS OF THE MILKY WAY AND M31 , 2011, 1105.2564.

[78]  R. Davies,et al.  Astronomical Society of the Pacific Conference Series , 2010 .

[79]  R. Bouwens,et al.  MEASUREMENT OF GALAXY CLUSTERING AT z ∼ 7.2 AND THE EVOLUTION OF GALAXY BIAS FROM 3.8 < z < 8 IN THE XDF, GOODS-S, AND GOODS-N , 2014, 1407.7316.

[80]  J. Lattanzio,et al.  The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars , 2014, Publications of the Astronomical Society of Australia.

[81]  K. Nagamine,et al.  IMPACT OF H2-BASED STAR FORMATION MODEL ON THE z ⩾ 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION , 2013, 1301.5270.

[82]  R. Davé,et al.  Gas clumping in self-consistent reionization models , 2012, 1209.2489.

[83]  M. Franx,et al.  ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION , 2009, 0910.0838.

[84]  H. Ferguson,et al.  ON THE STELLAR POPULATIONS AND EVOLUTION OF STAR-FORMING GALAXIES AT 6.3 < z ⩽ 8.6 , 2009, 0912.1338.

[85]  D. Burgarella,et al.  DETECTIONS OF LYMAN CONTINUUM FROM STAR-FORMING GALAXIES AT z ∼ 3 THROUGH SUBARU/SUPRIME-CAM NARROW-BAND IMAGING , 2008, 0805.4012.

[86]  J. Walsh,et al.  A Lyman Break Galaxy in the Epoch of Reionization from HST Grism Spectroscopy , 2013 .

[87]  A. Fontana,et al.  The lack of intense Lyman ~ alpha in ultradeep spectra of z = 7 candidates in GOODS-S : imprint of reionization ? , 2017 .

[88]  O. Fèvre,et al.  The bright end of the galaxy luminosity function at z≃7: before the onset of mass quenching? , 2013, 1312.5643.

[89]  Stefano Casertano,et al.  Rest-Frame Ultraviolet-to-Optical Properties of Galaxies at z ≈ 6 and z ≈ 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer , 2005 .

[90]  M. Pettini,et al.  Lyman-Continuum Emission from Galaxies at z ≃ 3.4 * , 2001 .

[91]  Benjamin D. Johnson,et al.  The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies , 2015, 1504.06621.

[92]  A. Mesinger,et al.  The detectability of Lyα emission from galaxies during the epoch of reionization , 2011, 1101.5160.

[93]  R. Bouwens,et al.  EVOLUTION OF GALAXY STELLAR MASS FUNCTIONS, MASS DENSITIES, AND MASS-TO-LIGHT RATIOS FROM z ∼ 7 TO z ∼ 4 , 2010, 1008.3901.

[94]  C. Steidel,et al.  PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.

[95]  P. Scowen,et al.  OBSERVATIONS OF THE CRAB NEBULA'S ASYMMETRICAL DEVELOPMENT , 2013 .

[96]  J. Kneib,et al.  ARE ULTRA-FAINT GALAXIES AT z = 6–8 RESPONSIBLE FOR COSMIC REIONIZATION? COMBINED CONSTRAINTS FROM THE HUBBLE FRONTIER FIELDS CLUSTERS AND PARALLELS , 2015, 1509.06764.

[97]  Robert H. Becker,et al.  Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.

[98]  B. Mobasher,et al.  PROBING THE PHYSICAL PROPERTIES OF z = 4.5 Lyα EMITTERS WITH SPITZER , 2015, 1509.06381.

[99]  R. Bouwens,et al.  z ∼ 7 GALAXY CANDIDATES FROM NICMOS OBSERVATIONS OVER THE HDF-SOUTH AND THE CDF-SOUTH AND HDF-NORTH GOODS FIELDS , 2010, 1003.1706.

[100]  D. Weinberg,et al.  The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations , 2013, 1302.3631.

[101]  J. Dunlop,et al.  KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.

[102]  Evert Rol,et al.  A γ-ray burst at a redshift of z ≈ 8.2 , 2009, Nature.

[103]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[104]  A. Fontana,et al.  The galaxy stellar mass function at 3.5 ≤z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields , 2015 .

[105]  C. Steidel,et al.  The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.

[106]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[107]  O. Ilbert,et al.  ISM MASSES AND THE STAR FORMATION LAW AT Z = 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD , 2015, 1511.05149.

[108]  John L. Tonry,et al.  X-Ray Spectra of Active Galactic Nuclei. , 1983 .

[109]  K. Finlator,et al.  Smoothly rising star formation histories during the reionization epoch , 2010, 1005.4066.

[110]  O. Fèvre,et al.  The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.

[111]  A. Fontana,et al.  THE LACK OF INTENSE Lyα IN ULTRADEEP SPECTRA OF z = 7 CANDIDATES IN GOODS-S: IMPRINT OF REIONIZATION? , 2010, 1010.2754.

[112]  M. Giavalisco,et al.  A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 , 2013, Nature.

[113]  G. Brammer,et al.  WHAT ARE THE PROGENITORS OF COMPACT, MASSIVE, QUIESCENT GALAXIES AT z = 2.3? THE POPULATION OF MASSIVE GALAXIES AT z > 3 FROM NMBS AND CANDELS , 2013, 1301.7063.

[114]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.

[115]  A. Dekel,et al.  Merger rates of dark matter haloes , 2008, 0802.0198.

[116]  Massimo Stiavelli,et al.  The Hubble Ultra Deep Field , 2003, astro-ph/0607632.

[117]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[118]  A. Kinney,et al.  Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .

[119]  J. Dunlop,et al.  NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.

[120]  A. Fontana,et al.  THE EVOLUTION OF THE GALAXY STELLAR MASS FUNCTION AT z = 4–8: A STEEPENING LOW-MASS-END SLOPE WITH INCREASING REDSHIFT , 2015, 1507.05636.

[121]  M. Franx,et al.  A SPECTROSCOPIC REDSHIFT MEASUREMENT FOR A LUMINOUS LYMAN BREAK GALAXY AT z = 7.730 USING KECK/MOSFIRE , 2015, 1502.05399.

[122]  S. M. Fall,et al.  Evidence for a Massive Poststarburst Galaxy at z ~ 6.5 , 2005, astro-ph/0509768.

[123]  S. Finkelstein,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 04/20/08 EVOLUTION OF LYMAN ALPHA GALAXIES: STELLAR POPULATIONS AT Z ∼ 0.3 , 2022 .

[124]  I. Smail,et al.  Redshift Distribution of the Faint Submillimeter Galaxy Population , 1999, astro-ph/9903142.

[125]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[126]  J. Kollmeier,et al.  THE SPECTRALLY RESOLVED Lyα EMISSION OF THREE Lyα-SELECTED FIELD GALAXIES AT z ∼ 2.4 FROM THE HETDEX PILOT SURVEY , 2013, 1308.1957.

[127]  M. Franx,et al.  VERY BLUE UV-CONTINUUM SLOPE β OF LOW LUMINOSITY z ∼ 7 GALAXIES FROM WFC3/IR: EVIDENCE FOR EXTREMELY LOW METALLICITIES? , 2009, 0910.0001.

[128]  S. Veilleux,et al.  SEARCHING FOR z ∼ 7.7 Lyα EMITTERS IN THE COSMOS FIELD WITH NEWFIRM , 2011, 1106.6055.

[129]  R. Bouwens,et al.  Spectroscopy of z ~ 6 i-Dropout Galaxies: Frequency of Lyα Emission and the Sizes of Lyα-emitting Galaxies , 2006, astro-ph/0612454.

[130]  D. Elbaz,et al.  GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z ∼ 2 , 2011, 1107.2653.

[131]  John L. Tonry,et al.  A survey of galaxy redshifts: 4. The data. , 1983 .

[132]  Arjun Dey,et al.  First results from the Large-Area Lyman Alpha survey , 1999 .

[133]  Nimish Hathi,et al.  THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.

[134]  P. Hibon,et al.  SEARCH FOR z ∼ 7 Lyα EMITTERS WITH THE SUPRIME-CAM AT THE SUBARU TELESCOPE , 2011, 1109.3461.

[135]  A. Dekel,et al.  METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES , 2011, 1106.0301.

[136]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[137]  J. Hjorth,et al.  Dust grain growth in the interstellar medium of 5 < z < 6.5 quasars , 2010, 1006.5466.

[138]  R. Bouwens,et al.  Clustering of i 775 Dropout Galaxies at z ~ 6 in GOODS and the UDF , 2006, astro-ph/0607398.

[139]  Lennox L. Cowie,et al.  HIGH-Z LYALPHA EMITTERS. I. A BLANK-FIELD SEARCH FOR OBJECTS NEAR REDSHIFT Z = 3.4 IN AND AROUND THE HUBBLE DEEP FIELD AND THE HAWAII DEEP FIELD SSA 22 , 1998 .

[140]  R. Bouwens,et al.  REIONIZATION AFTER PLANCK: THE DERIVED GROWTH OF THE COSMIC IONIZING EMISSIVITY NOW MATCHES THE GROWTH OF THE GALAXY UV LUMINOSITY DENSITY , 2015, 1503.08228.

[141]  S. E. Persson,et al.  EXPLORING THE z = 3–4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES , 2014, 1405.1048.

[142]  How small were the first cosmological objects , 1996, astro-ph/9603007.

[143]  R. Bouwens,et al.  Quantifying the UV-continuum slopes of galaxies to z ∼ 10 using deep Hubble+Spitzer/IRAC observations , 2015, 1510.01514.

[144]  R. Wechsler,et al.  USING CUMULATIVE NUMBER DENSITIES TO COMPARE GALAXIES ACROSS COSMIC TIME , 2013, 1308.3232.

[145]  C. Conselice,et al.  CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.

[146]  M. Ouchi,et al.  KECK SPECTROSCOPY OF FAINT 3>z>7 LYMAN BREAK GALAXIES: A HIGH FRACTION OF LINE EMITTERS AT REDSHIFT SIX , 2010, 1009.5471.

[147]  Richard G. McMahon,et al.  A luminous quasar at a redshift of z = 7.085 , 2011, Nature.

[148]  Richard G. McMahon,et al.  A Redshift z = 6.56 Galaxy Behind the Cluster Abell 370 , 2002 .

[149]  A. Fruchter,et al.  HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.

[150]  P. Capak,et al.  SPECTROSCOPIC OBSERVATION OF Lyα EMITTERS AT z ∼ 7.7 AND IMPLICATIONS ON RE-IONIZATION , 2014, 1402.3604.

[151]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[152]  C. Baugh,et al.  Predictions for the intrinsic UV continuum properties of star-forming galaxies and the implications for inferring dust extinction , 2012, 1206.2732.

[153]  M. Dickinson,et al.  z~4 Halpha Emitters in GOODS : Tracing the Dominant Mode for Growth of Galaxies , 2011, 1103.4124.

[154]  Takashi Hattori,et al.  A galaxy at a redshift z = 6.96 , 2006, Nature.

[155]  Hilo,et al.  Unveiling Dust-enshrouded Star Formation in the Early Universe: a Sub-mm Survey of the Hubble Deep Field , 1998, astro-ph/9806297.

[156]  J. Hjorth,et al.  Production of dust by massive stars at high redshift , 2011, 1108.0403.

[157]  R. Bouwens,et al.  UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.

[158]  M. Giavalisco,et al.  NEW OBSERVATIONS OF z ∼ 7 GALAXIES: EVIDENCE FOR A PATCHY REIONIZATION , 2014, 1403.5466.

[159]  M. Franx,et al.  A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr , 2009, Nature.

[160]  S. Okamura,et al.  STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.

[161]  J. Dunlop,et al.  The z = 9-10 galaxy population in the Hubble Frontier Fields and CLASH surveys: the z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8 , 2016, 1602.05199.

[162]  J. Diego,et al.  A GEOMETRICALLY SUPPORTED z ∼ 10 CANDIDATE MULTIPLY IMAGED BY THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1407.3769.

[163]  O. Fèvre,et al.  The galaxy luminosity function at z ≃ 6 and evidence for rapid evolution in the bright end from z ≃ 7 to 5 , 2014, 1411.2976.

[164]  R. Bouwens,et al.  A TENTATIVE DETECTION OF AN EMISSION LINE AT 1.6 μm FOR THE z ∼ 12 CANDIDATE UDFj-39546284 , 2013, 1301.0317.

[165]  Michele Cirasuolo,et al.  THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW , 2012, 1212.1448.

[166]  Cambridge,et al.  The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.

[167]  J. Dunlop,et al.  Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF , 2009, 0909.2437.

[168]  M. Nonino,et al.  SPECTROSCOPIC OBSERVATIONS OF LYMAN BREAK GALAXIES AT REDSHIFTS ∼4, 5, AND 6 IN THE GOODS-SOUTH FIELD , 2009, 0901.4364.

[169]  C. C. Steidel,et al.  NARROWBAND IMAGING OF ESCAPING LYMAN-CONTINUUM EMISSION IN THE SSA22 FIELD, , 2011, 1102.0286.

[170]  R. Bouwens,et al.  z ≳ 7 GALAXIES WITH RED SPITZER/IRAC [3.6]–[4.5] COLORS IN THE FULL CANDELS DATA SET: THE BRIGHTEST-KNOWN GALAXIES AT z ∼ 7–9 AND A PROBABLE SPECTROSCOPIC CONFIRMATION AT z = 7.48 , 2015, 1506.00854.

[171]  J. Bolton,et al.  On the rapid demise of Ly α emitters at redshift z ≳ 7 due to the increasing incidence of optically thick absorption systems , 2012, 1208.4417.

[172]  Matthew Colless,et al.  Three Lyα Emitters at z ≈ 6: Early GMOS/Gemini Data from the GLARE Project , 2003, astro-ph/0312459.

[173]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[174]  S. Wilkins,et al.  The ultraviolet properties of star-forming galaxies – I. HST WFC3 observations of very high redshift galaxies , 2011, 1106.5977.

[175]  S. Finkelstein,et al.  CONNECTING THE DOTS: TRACKING GALAXY EVOLUTION USING CONSTANT CUMULATIVE NUMBER DENSITY AT 3 ≤ z ≤ 7 , 2015, 1507.00713.

[176]  S. Okamura,et al.  Clustering of Lyman Break Galaxies at z = 4 and 5 in the Subaru Deep Field: Luminosity Dependence of the Correlation Function Slope , 2005, astro-ph/0509564.

[177]  M. L. N. Ashby,et al.  THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.

[178]  J. Dunlop,et al.  CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION , 2012, 1206.0735.

[179]  T. Morokuma,et al.  Lyα EMITTERS AT z = 7 IN THE SUBARU/XMM-NEWTON DEEP SURVEY FIELD: PHOTOMETRIC CANDIDATES AND LUMINOSITY FUNCTION , 2010, 1008.4842.

[180]  R. Ellis,et al.  A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.

[181]  R. Wechsler,et al.  THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.

[182]  Edinburgh,et al.  COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.

[183]  L. Pentericci,et al.  Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.

[184]  H. Ferguson,et al.  THE QUENCHING OF THE ULTRA-FAINT DWARF GALAXIES IN THE REIONIZATION ERA , 2014, 1410.0681.

[185]  D. Narayanan,et al.  Dusty Star Forming Galaxies at High Redshift , 2014, 1402.1456.

[186]  R. B. Partridge,et al.  Are Young Galaxies Visible , 1967 .

[187]  N. Konidaris,et al.  LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.

[188]  R. Bouwens,et al.  UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.

[189]  S. E. Persson,et al.  DISCOVERY OF LYMAN BREAK GALAXIES AT z ∼ 7 FROM THE zFourGE SURVEY , 2013, 1304.4227.

[190]  Northwestern,et al.  The difficulty of getting high escape fractions of ionizing photons from high-redshift galaxies: A view from the FIRE cosmological simulations , 2015, 1503.07880.

[191]  Massimo Stiavelli,et al.  THE CHANGING Lyα OPTICAL DEPTH IN THE RANGE 6 < z < 9 FROM THE MOSFIRE SPECTROSCOPY OF Y-DROPOUTS , 2013 .

[192]  M. C. Cooper,et al.  High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.

[193]  Astronomy,et al.  Limits on the luminosity function of Ly alpha emitters at z=7.7 , 2009, 0907.3354.

[194]  B. Weiner,et al.  A Lyα GALAXY AT REDSHIFT z = 6.944 IN THE COSMOS FIELD , 2012, 1205.3161.

[195]  Michele Cirasuolo,et al.  THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.

[196]  M. Giavalisco,et al.  The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.

[197]  M. Franx,et al.  TRACING GALAXIES THROUGH COSMIC TIME WITH NUMBER DENSITY SELECTION , 2013, 1302.1195.

[198]  T. Greif,et al.  The First Stars , 2003, astro-ph/0311019.

[199]  R. Ellis,et al.  Early star-forming galaxies and the reionization of the Universe , 2010, Nature.

[200]  S. Okamura,et al.  GAS MOTION STUDY OF Lyα EMITTERS AT z ∼ 2 USING FUV AND OPTICAL SPECTRAL LINES, , 2012, 1206.2316.

[201]  The Rest-Frame Ultraviolet Luminosity Density of Star-forming Galaxies at Redshifts z > 3.5 , 2003, astro-ph/0309065.

[202]  J. Gardner,et al.  A Deep Imaging and Spectroscopic Survey of Faint Galaxies , 1991 .

[203]  Martin J. Rees,et al.  Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.

[204]  C. Conselice,et al.  A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.

[205]  L. J. Storrie-Lombardi,et al.  Keck Spectroscopy and NICMOS Photometry of a Redshift z = 5.60 Galaxy* , 1998 .

[206]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[207]  K. Schawinski,et al.  The physical nature of Lyα-emitting galaxies at z = 3.1 , 2006, astro-ph/0603244.

[208]  Carnegie Observatories,et al.  A star‐forming galaxy at z= 5.78 in the Chandra Deep Field South , 2003 .

[209]  E. Vanzella,et al.  Can the intergalactic medium cause a rapid drop in Lyα emission at z > 6? , 2014, 1406.6373.

[210]  J. Dunlop,et al.  New redshift z ≃ 9 galaxies in the Hubble Frontier Fields: implications for early evolution of the UV luminosity density , 2014, 1412.1472.

[211]  R. Windhorst,et al.  The Major Sources of the Cosmic Reionizing Background at z ≃ 6 , 2003, astro-ph/0312572.

[212]  S. Khochfar,et al.  The First Billion Years project: the escape fraction of ionizing photons in the epoch of reionization , 2015, 1501.01967.

[213]  S. Okamura,et al.  The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.

[214]  Mark Dickinson,et al.  KECK/MOSFIRE SPECTROSCOPY OF z = 7–8 GALAXIES: Lyα EMISSION FROM A GALAXY AT z = 7.66 , 2016, 1602.02160.

[215]  P. Hewett,et al.  How neutral is the intergalactic medium surrounding the redshift z = 7.085 quasar ULAS J1120+0641? , 2011, 1106.6089.

[216]  A. Fontana,et al.  SPECTROSCOPIC CONFIRMATION OF z ∼ 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION , 2011, 1107.1376.

[217]  O. Ilbert,et al.  The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang , 2015, 1503.07596.

[218]  D. Elbaz,et al.  A DEEP SEARCH FOR MOLECULAR GAS IN TWO MASSIVE LYMAN BREAK GALAXIES AT z = 3 AND 4: VANISHING CO-EMISSION DUE TO LOW METALLICITY? , 2013, 1309.5448.

[219]  R. Bouwens,et al.  THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.

[220]  R. Bouwens,et al.  Lyα EMISSION FROM A LUMINOUS z = 8.68 GALAXY: IMPLICATIONS FOR GALAXIES AS TRACERS OF COSMIC REIONIZATION , 2015, 1507.02679.

[221]  A. Fontana,et al.  THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). III. A CENSUS OF Lyα EMISSION AT z ≳ 7 ?> FROM HST SPECTROSCOPY , 2015, 1511.04205.

[222]  Marijn Franx,et al.  THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.

[223]  M. Franx,et al.  Galaxies at z~6: The UV Luminosity Function and Luminosity Density from 506 UDF, UDF-Ps, and GOODS i-dropouts , 2005, astro-ph/0509641.

[224]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[225]  R. Davé,et al.  Constraints on physical properties of z ∼ 6 galaxies using cosmological hydrodynamic simulations , 2006, astro-ph/0607039.

[226]  R. Zinn,et al.  Compositions of halo clusters and the formation of the galactic halo , 1978 .

[227]  J. Dunlop,et al.  High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.

[228]  Simulating Cosmic Reionization at Large Scales I: the Geometry of Reionization , 2005, astro-ph/0512187.

[229]  S. Veilleux,et al.  THE LUMINOSITY FUNCTION OF Lyα EMITTERS AT REDSHIFT z = 7.7 , 2010, 1006.3071.

[230]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[231]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[232]  P. Madau,et al.  Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six , 2014, 1407.4850.

[233]  Charles L. Bennett,et al.  High-Latitude Galactic Emission in the COBE Differential Microwave Radiometer 2 Year Sky Maps , 1996 .

[234]  IoA,et al.  Spitzer and Hubble Space Telescope Constraints on the Physical Properties of the z ~ 7 Galaxy Strongly Lensed by A2218 , 2004, astro-ph/0411117.

[235]  C. Maraston Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.

[236]  R. Bouwens,et al.  FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT z ∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES , 2014, 1409.1228.

[237]  I. Reid,et al.  THE SURFACE DENSITIES OF DISK BROWN DWARFS IN JWST SURVEYS , 2015, 1510.05019.

[238]  K. Nagamine,et al.  Duty cycle and the increasing star formation history of z ≥ 6 galaxies , 2012, 1204.4846.

[239]  M. Dickinson,et al.  Hubble Ultra Deep Field-JD2: Mid-Infrared Evidence for a z ~ 2 Luminous Infrared Galaxy , 2007, 0705.0660.

[240]  Timothy M. Heckman,et al.  Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.

[241]  Mauro Giavalisco,et al.  Lyman-Break Galaxies , 2002 .

[242]  S. Malhotra,et al.  SEARCH FOR z ∼ 6.96 Lyα EMITTERS WITH MAGELLAN/IMACS IN THE COSMOS FIELD , 2011, 1109.0009.

[243]  Arjun Dey,et al.  Spectroscopic Confirmation of Three Redshift z ≈ 5.7 Lyα Emitters from the Large-Area Lyman Alpha Survey , 2002, astro-ph/0209544.

[244]  Cambridge,et al.  Lyman break galaxies and the star formation rate of the Universe at z≈ 6 , 2003 .

[245]  R. Bouwens,et al.  HIGH-PRECISION PHOTOMETRIC REDSHIFTS FROM SPITZER/IRAC: EXTREME [3.6] – [4.5] COLORS IDENTIFY GALAXIES IN THE REDSHIFT RANGE z ∼ 6.6 – 6.9 , 2014, 1412.0663.

[246]  A. Fontana,et al.  THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: CONSTRAINTS ON THE LYMAN CONTINUUM ESCAPE FRACTION DISTRIBUTION OF LYMAN-BREAK GALAXIES AT 3.4 < z < 4.5 , 2010, 1009.1140.

[247]  A. Koekemoer,et al.  RAPID DECLINE OF Lyα EMISSION TOWARD THE REIONIZATION ERA , 2014, 1405.4869.

[248]  A. Fontana,et al.  A STUDY OF MASSIVE AND EVOLVED GALAXIES AT HIGH REDSHIFT , 2014, 1408.3684.

[249]  R. Bouwens,et al.  z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.

[250]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[251]  B. Robertson,et al.  Spectroscopic detections of C iii] λ1909 Å at z ≃ 6–7: a new probe of early star-forming galaxies and cosmic reionization , 2014, 1408.3649.

[252]  A. Cimatti,et al.  Star formation rates and masses of z∼ 2 galaxies from multicolour photometry , 2010, 1004.4546.

[253]  I. Smail,et al.  A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.

[254]  J. Walsh,et al.  A LYMAN BREAK GALAXY IN THE EPOCH OF REIONIZATION FROM HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY , 2013, 1302.7005.

[255]  H. Hildebrandt,et al.  The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.

[256]  I. Smail,et al.  A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.

[257]  Ralf Bender,et al.  The mass of galaxies at low and high redshift : proceedings of the European Southern Observatory and Universitäts-Sternwarte München workshop held in Venice, Italy, 24-26 October 2001 , 2003 .

[258]  J. Ostriker,et al.  Reionization of the Universe and the Early Production of Metals , 1996, astro-ph/9612127.

[259]  J. Kollmeier,et al.  The Spectrally Resolved Lyman-Alpha Emission Of Three Lyman-Alpha-Selected Field Galaxies At Z Similar To 2.4 From The HETDEX Pilot Survey , 2013 .

[260]  J. Schaye,et al.  Spatially adaptive radiation-hydrodynamical simulations of galaxy formation during cosmological reionization , 2015, 1501.01980.

[261]  An Overdensity of Galaxies at z = 5.9 ? 0.2 in the Hubble Ultra Deep Field Confirmed Using the ACS Grism , 2005, astro-ph/0501478.

[262]  Search Techniques for Distant Galaxies , 1999, astro-ph/9912082.

[263]  C. Steidel,et al.  A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.

[264]  F. Mannucci,et al.  Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field , 2009, 0909.2853.

[265]  S. Djorgovski,et al.  Discovery of a probable galaxy with a redshift of 3.218 , 1985 .

[266]  R. Bouwens,et al.  Star Formation at z ~ 6: i-Dropouts in the Advanced Camera for Surveys Guaranteed Time Observation Fields , 2003 .

[267]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.

[268]  Yu Feng,et al.  Interpreting the observed UV continuum slopes of high-redshift galaxies , 2013, 1302.1387.

[269]  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[270]  A. Fontana,et al.  SPECTROSCOPIC CONFIRMATION OF TWO LYMAN BREAK GALAXIES AT REDSHIFT BEYOND 7 , 2010, 1011.5500.

[271]  J. Tyson,et al.  Deep CCD survey - Galaxy luminosity and color evolution , 1988 .

[272]  Max Pettini,et al.  The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3 , 2006, astro-ph/0606635.

[273]  Robin Ciardullo,et al.  THE HETDEX PILOT SURVEY. III. THE LOW METALLICITIES OF HIGH-REDSHIFT Lyα GALAXIES , 2010, 1011.0431.

[274]  A dusty, normal galaxy in the epoch of reionization , 2015, Nature.

[275]  C. Conselice,et al.  The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field , 2014, 1408.2527.

[276]  A. Fontana,et al.  The blue UV slopes of z ~ 4 Lyman break galaxies: implications for the corrected star formation rate density , 2011, 1109.1757.

[277]  K. Shimasaku,et al.  FIRST SPECTROSCOPIC EVIDENCE FOR HIGH IONIZATION STATE AND LOW OXYGEN ABUNDANCE IN Lyα EMITTERS, , 2012, 1208.3260.

[278]  J. Rhoads,et al.  The GLARE Survey – II. Faint z≈ 6 Lyα line emitters in the HUDF , 2007, astro-ph/0701211.

[279]  M. Franx,et al.  UV-CONTINUUM SLOPES AT z  ∼  4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.

[280]  Searching for z ≃ 6 Objects with the Hubble Space Telescope Advanced Camera for Surveys: Preliminary Analysis of a Deep Parallel Field , 2002, astro-ph/0212179.

[281]  J. Dunlop,et al.  Massive Galaxies at Redshifts 5, 2006 .

[282]  J. Dunlop,et al.  The unbiased measurement of ultraviolet spectral slopes in low-luminosity galaxies at z ≈ 7 , 2012, 1209.4636.

[283]  M. Donahue,et al.  EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN z ∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES , 2013, 1307.5847.