Observational Searches for Star-Forming Galaxies at z > 6
暂无分享,去创建一个
[1] Cambridge,et al. ∼ 4 and the Evolution of the Uv Luminosity Density at High Redshift , 2022 .
[2] The stellar mass density at z ~6 from Spitzer imaging of i'-drop galaxies , 2006, astro-ph/0607306.
[3] Mark Lacy,et al. The contribution of high-redshift galaxies to cosmic reionization: New results from deep WFC3 imaging of the Hubble Ultra Deep Field , 2009, 0909.2255.
[4] J. Schaye,et al. Keeping the Universe ionized: photoheating and the clumping factor of the high-redshift intergalactic medium , 2008, 0807.3963.
[5] Michigan.,et al. ZFOURGE/CANDELS: ON THE EVOLUTION OF M* GALAXY PROGENITORS FROM z = 3 TO 0.5 , 2014, 1412.3806.
[6] M. Franx,et al. ULTRAVIOLET LUMINOSITY FUNCTIONS FROM 132 z ∼ 7 AND z ∼ 8 LYMAN-BREAK GALAXIES IN THE ULTRA-DEEP HUDF09 AND WIDE-AREA EARLY RELEASE SCIENCE WFC3/IR OBSERVATIONS , 2010, 1006.4360.
[7] D. Schaerer,et al. The impact of nebular emission on the ages of z~6 galaxies , 2009, 0905.0866.
[8] Andrew R. Liddle,et al. How many cosmological parameters , 2004, astro-ph/0401198.
[9] R. Wechsler,et al. CONNECTING REIONIZATION TO THE LOCAL UNIVERSE , 2008, 0812.3405.
[10] The Stellar Masses and Star Formation Histories of Galaxies at z ≈ 6: Constraints from Spitzer Observations in the Great Observatories Origins Deep Survey , 2006, astro-ph/0604554.
[11] R. Bouwens,et al. NOT IN OUR BACKYARD: SPECTROSCOPIC SUPPORT FOR THE CLASH z = 11 CANDIDATE MACS 0647-JD , 2015, 1502.05681.
[12] Jason X. Prochaska,et al. Probing the Interstellar Medium near Star-forming Regions with Gamma-Ray Burst Afterglow Spectroscopy: Gas, Metals, and Dust , 2007 .
[13] NOAO,et al. Color-selected galaxies at Z 6 in the great observatories origins deep survey , 2004 .
[14] J. Dunlop,et al. THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY , 2013, 1303.4409.
[15] M. Franx,et al. THE HST EXTREME DEEP FIELD (XDF): COMBINING ALL ACS AND WFC3/IR DATA ON THE HUDF REGION INTO THE DEEPEST FIELD EVER , 2013, 1305.1931.
[16] Peter Capak,et al. Spectroscopic Confirmation of an Extreme Starburst at Redshift 4.547 , 2008, 0806.0657.
[17] B. Ciardi,et al. The dust mass in z > 6 normal star-forming galaxies , 2015, 1505.01841.
[18] K. Nagamine,et al. Steep faint-end slopes of galaxy mass and luminosity functions at z≥ 6 and the implications for reionization , 2011, 1104.2345.
[19] M. Rees,et al. Pregalactic evolution in cosmologies with cold dark matter , 1986 .
[20] M. Milosavljevic,et al. Star formation in the first galaxies – II. Clustered star formation and the influence of metal line cooling , 2013, 1307.1982.
[21] Piero Madau,et al. COSMIC REIONIZATION AFTER PLANCK: COULD QUASARS DO IT ALL? , 2015, 1507.07678.
[22] Maximilian Fabricius,et al. THE HETDEX PILOT SURVEY. V. THE PHYSICAL ORIGIN OF Lyα EMITTERS PROBED BY NEAR-INFRARED SPECTROSCOPY , 2014, 1406.4503.
[23] M. Franx,et al. DISCOVERY OF z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS , 2009, 0909.1803.
[24] M. Boylan-Kolchin,et al. Push it to the limit: Local Group constraints on high-redshift stellar mass functions for M⋆ ≥ 105 M⊙ , 2015, 1509.01250.
[25] D. Schaerer,et al. On the physical properties of z ≈ 6–8 galaxies , 2010, 1002.1090.
[26] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[27] Z. Haiman,et al. Evolution in the escape fraction of ionizing photons and the decline in strong Lyα emission from z > 6 galaxies , 2014, 1401.7676.
[28] K. Shimasaku,et al. THE FIRST SYSTEMATIC SURVEY FOR Lyα EMITTERS AT z = 7.3 WITH RED-SENSITIVE SUBARU/SUPRIME-CAM , 2011, 1112.3997.
[29] L. Bradley,et al. THE LUMINOSITY FUNCTION AT z ∼ 8 FROM 97 Y-BAND DROPOUTS: INFERENCES ABOUT REIONIZATION , 2014, 1402.4129.
[30] V. Springel,et al. Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.
[31] H. Ferguson,et al. The rising star formation histories of distant galaxies and implications for gas accretion with time , 2010, 1007.4554.
[32] Ignasi Ribas,et al. Pathways Towards Habitable Planets , 2010 .
[33] J. Dunlop,et al. THE UV LUMINOSITY FUNCTION OF STAR-FORMING GALAXIES VIA DROPOUT SELECTION AT REDSHIFTS z ∼ 7 AND 8 FROM THE 2012 ULTRA DEEP FIELD CAMPAIGN , 2012, 1212.4819.
[34] M. Dijkstra. Lyα Emitting Galaxies as a Probe of Reionisation , 2014, Publications of the Astronomical Society of Australia.
[35] B. O’Shea,et al. PROBING THE ULTRAVIOLET LUMINOSITY FUNCTION OF THE EARLIEST GALAXIES WITH THE RENAISSANCE SIMULATIONS , 2015, 1503.01110.
[36] R. Bouwens,et al. SLOW EVOLUTION OF THE SPECIFIC STAR FORMATION RATE AT z > 2: THE IMPACT OF DUST, EMISSION LINES, AND A RISING STAR FORMATION HISTORY , 2012, 1208.4362.
[37] R. Bouwens,et al. CLASH: THREE STRONGLY LENSED IMAGES OF A CANDIDATE z ≈ 11 GALAXY , 2012, 1211.3663.
[38] O. Ilbert,et al. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C ii] emission , 2015, Nature.
[39] J. Dunlop,et al. A critical analysis of the ultraviolet continuum slopes (β) of high-redshift galaxies: no evidence (yet) for extreme stellar populations at z > 6 , 2011, 1102.5005.
[40] Kindler-Rohrborn,et al. In press , 1994, Molecular carcinogenesis.
[41] A. Klypin,et al. DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.
[42] V. Wild,et al. The UV continua and inferred stellar populations of galaxies at z ~7-9 revealed by the Hubble Ultra-Deep Field 2012 campaign , 2012, 1212.0860.
[43] Measuring the Cosmic Equation of State with Counts of Galaxies. , 2000, The Astrophysical journal.
[44] M. Franx,et al. UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.
[45] S. M. Fall,et al. LARGE AREA SURVEY FOR z = 7 GALAXIES IN SDF AND GOODS-N: IMPLICATIONS FOR GALAXY FORMATION AND COSMIC REIONIZATION , 2009, 0908.3191.
[46] R. Ellis,et al. KECK SPECTROSCOPY OF FAINT 3 < z < 8 LYMAN BREAK GALAXIES: EVIDENCE FOR A DECLINING FRACTION OF EMISSION LINE SOURCES IN THE REDSHIFT RANGE 6 < z < 8 , 2011, 1107.1261.
[47] J. P. U. Fynbo,et al. Edinburgh Research Explorer Discovery of bright z 7 galaxies in the UltraVISTA survey , 2012 .
[48] J. Dunlop,et al. The luminosity function, halo masses and stellar masses of luminous Lyman-break galaxies at redshifts 5 < z < 6 , 2008, 0805.1335.
[49] Hooshang Nayyeri,et al. SPECTROSCOPIC CONFIRMATION OF THREE z-DROPOUT GALAXIES AT z = 6.844–7.213: DEMOGRAPHICS OF Lyα EMISSION IN z ∼ 7 GALAXIES , 2011, 1107.3159.
[50] R. Somerville,et al. Physical Models of Galaxy Formation in a Cosmological Framework , 2014, 1412.2712.
[51] M. Oguri,et al. HUBBLE FRONTIER FIELDS FIRST COMPLETE CLUSTER DATA: FAINT GALAXIES AT z ∼ 5–10 FOR UV LUMINOSITY FUNCTIONS AND COSMIC REIONIZATION , 2014, 1408.6903.
[52] L. Cowie,et al. Submillimetre-wavelength detection of dusty star-forming galaxies at high redshift , 1998, Nature.
[53] M. Dickinson,et al. Cosmic Star-Formation History , 1996, 1403.0007.
[54] V. A. Bruce,et al. AN EXPONENTIAL DECLINE AT THE BRIGHT END OF THE z = 6 GALAXY LUMINOSITY FUNCTION , 2012, 1202.5330.
[55] C. Conroy. Modeling the Panchromatic Spectral Energy Distributions of Galaxies , 2013, 1301.7095.
[56] H. Rottgering,et al. Identification of the brightest Lyα emitters at z = 6.6 : Implications for the evolution of the luminosity function in the reionization era , 2015, 1502.07355.
[57] T. Lauer,et al. A magnified young galaxy from about 500 million years after the Big Bang , 2012, Nature.
[58] R. Wechsler,et al. THE RELATION BETWEEN STAR FORMATION RATE AND STELLAR MASS FOR GALAXIES AT 3.5 ⩽ z ⩽ 6.5 IN CANDELS , 2014, 1407.6012.
[59] B. Milvang-Jensen,et al. Ultraviolet emission lines in young low-mass galaxies at z ≃ 2: physical properties and implications for studies at z > 7 , 2014, 1408.1420.
[60] Possible Detection of Cosmological Reionization Sources , 2004, astro-ph/0405219.
[61] P. Shapiro,et al. On the use of Lyα emitters as probes of reionization , 2012, 1206.4028.
[62] S. Majewski,et al. A redshift limit for the faint blue galaxy population from deep U band imaging , 1990 .
[63] R. Bouwens,et al. PROBING THE DAWN OF GALAXIES AT z ∼ 9–12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA , 2013, 1301.6162.
[64] K. Finlator,et al. Galaxy Evolution in Cosmological Simulations with Outflows II: Metallicities and Gas Fractions , 2011, 1104.3156.
[65] Richard S. Ellis,et al. Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.
[66] T. Budavari,et al. The GALEX-VVDS Measurement of the Evolution of the Far-Ultraviolet Luminosity Density and the Cosmic Star Formation Rate , 2004, astro-ph/0411424.
[67] Marijn Franx,et al. Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 5/14/03 THE REST-FRAME OPTICAL LUMINOSITY DENSITY, COLOR, AND STELLAR MASS DENSITY OF THE UNIVERSE FROM Z=0 TO Z=3 1 , 2003 .
[68] Donald Hamilton,et al. Deep imaging of high redshift QSO fields below the Lyman limit. II - Number counts and colors of field galaxies , 1993 .
[69] Volker Springel,et al. SIMULATIONS ON A MOVING MESH: THE CLUSTERED FORMATION OF POPULATION III PROTOSTARS , 2011, 1101.5491.
[70] A. Fontana,et al. ON THE DETECTION OF IONIZING RADIATION ARISING FROM STAR-FORMING GALAXIES AT REDSHIFT z ∼ 3–4: LOOKING FOR ANALOGS OF “STELLAR RE-IONIZERS” , 2012, 1201.5642.
[71] A. Kinney,et al. The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.
[72] J. Dunlop,et al. The colour distribution of galaxies at redshift five , 2013, 1312.4975.
[73] M. Franx,et al. UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.
[74] Stefano Casertano,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3754.
[75] M. Pettini,et al. Rest-Frame Ultraviolet Spectra of z ∼ 3 Lyman Break Galaxies , 2003, astro-ph/0301230.
[76] B. Altieri,et al. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34 , 2013, Nature.
[77] D. Croton,et al. THE MID-LIFE CRISIS OF THE MILKY WAY AND M31 , 2011, 1105.2564.
[78] R. Davies,et al. Astronomical Society of the Pacific Conference Series , 2010 .
[79] R. Bouwens,et al. MEASUREMENT OF GALAXY CLUSTERING AT z ∼ 7.2 AND THE EVOLUTION OF GALAXY BIAS FROM 3.8 < z < 8 IN THE XDF, GOODS-S, AND GOODS-N , 2014, 1407.7316.
[80] J. Lattanzio,et al. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars , 2014, Publications of the Astronomical Society of Australia.
[81] K. Nagamine,et al. IMPACT OF H2-BASED STAR FORMATION MODEL ON THE z ⩾ 6 LUMINOSITY FUNCTION AND THE IONIZING PHOTON BUDGET FOR REIONIZATION , 2013, 1301.5270.
[82] R. Davé,et al. Gas clumping in self-consistent reionization models , 2012, 1209.2489.
[83] M. Franx,et al. ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB-L* z ∼ 7 AND z ∼ 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION , 2009, 0910.0838.
[84] H. Ferguson,et al. ON THE STELLAR POPULATIONS AND EVOLUTION OF STAR-FORMING GALAXIES AT 6.3 < z ⩽ 8.6 , 2009, 0912.1338.
[85] D. Burgarella,et al. DETECTIONS OF LYMAN CONTINUUM FROM STAR-FORMING GALAXIES AT z ∼ 3 THROUGH SUBARU/SUPRIME-CAM NARROW-BAND IMAGING , 2008, 0805.4012.
[86] J. Walsh,et al. A Lyman Break Galaxy in the Epoch of Reionization from HST Grism Spectroscopy , 2013 .
[87] A. Fontana,et al. The lack of intense Lyman ~ alpha in ultradeep spectra of z = 7 candidates in GOODS-S : imprint of reionization ? , 2017 .
[88] O. Fèvre,et al. The bright end of the galaxy luminosity function at z≃7: before the onset of mass quenching? , 2013, 1312.5643.
[89] Stefano Casertano,et al. Rest-Frame Ultraviolet-to-Optical Properties of Galaxies at z ≈ 6 and z ≈ 5 in the Hubble Ultra Deep Field: From Hubble to Spitzer , 2005 .
[90] M. Pettini,et al. Lyman-Continuum Emission from Galaxies at z ≃ 3.4 * , 2001 .
[91] Benjamin D. Johnson,et al. The Local Group as a time machine: studying the high-redshift Universe with nearby galaxies , 2015, 1504.06621.
[92] A. Mesinger,et al. The detectability of Lyα emission from galaxies during the epoch of reionization , 2011, 1101.5160.
[93] R. Bouwens,et al. EVOLUTION OF GALAXY STELLAR MASS FUNCTIONS, MASS DENSITIES, AND MASS-TO-LIGHT RATIOS FROM z ∼ 7 TO z ∼ 4 , 2010, 1008.3901.
[94] C. Steidel,et al. PHYSICAL CONDITIONS IN A YOUNG, UNREDDENED, LOW-METALLICITY GALAXY AT HIGH REDSHIFT , 2010, 1006.5456.
[95] P. Scowen,et al. OBSERVATIONS OF THE CRAB NEBULA'S ASYMMETRICAL DEVELOPMENT , 2013 .
[96] J. Kneib,et al. ARE ULTRA-FAINT GALAXIES AT z = 6–8 RESPONSIBLE FOR COSMIC REIONIZATION? COMBINED CONSTRAINTS FROM THE HUBBLE FRONTIER FIELDS CLUSTERS AND PARALLELS , 2015, 1509.06764.
[97] Robert H. Becker,et al. Constraining the Evolution of the Ionizing Background and the Epoch of Reionization with z ∼ 6 Quasars. II. A Sample of 19 Quasars , 2005, astro-ph/0512082.
[98] B. Mobasher,et al. PROBING THE PHYSICAL PROPERTIES OF z = 4.5 Lyα EMITTERS WITH SPITZER , 2015, 1509.06381.
[99] R. Bouwens,et al. z ∼ 7 GALAXY CANDIDATES FROM NICMOS OBSERVATIONS OVER THE HDF-SOUTH AND THE CDF-SOUTH AND HDF-NORTH GOODS FIELDS , 2010, 1003.1706.
[100] D. Weinberg,et al. The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations , 2013, 1302.3631.
[101] J. Dunlop,et al. KECK SPECTROSCOPY OF 3 < z < 7 FAINT LYMAN BREAK GALAXIES: THE IMPORTANCE OF NEBULAR EMISSION IN UNDERSTANDING THE SPECIFIC STAR FORMATION RATE AND STELLAR MASS DENSITY , 2012, 1208.3529.
[102] Evert Rol,et al. A γ-ray burst at a redshift of z ≈ 8.2 , 2009, Nature.
[103] K. Bundy,et al. THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.
[104] A. Fontana,et al. The galaxy stellar mass function at 3.5 ≤z ≤ 7.5 in the CANDELS/UDS, GOODS-South, and HUDF fields , 2015 .
[105] C. Steidel,et al. The Stellar, Gas, and Dynamical Masses of Star-forming Galaxies at z ~ 2 , 2006, astro-ph/0604041.
[106] S. Ravindranath,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.
[107] O. Ilbert,et al. ISM MASSES AND THE STAR FORMATION LAW AT Z = 1 TO 6: ALMA OBSERVATIONS OF DUST CONTINUUM IN 145 GALAXIES IN THE COSMOS SURVEY FIELD , 2015, 1511.05149.
[108] John L. Tonry,et al. X-Ray Spectra of Active Galactic Nuclei. , 1983 .
[109] K. Finlator,et al. Smoothly rising star formation histories during the reionization epoch , 2010, 1005.4066.
[110] O. Fèvre,et al. The Canada-France Redshift Survey: The Luminosity Density and Star Formation History of the Universe to z ~ 1 , 1996, astro-ph/9601050.
[111] A. Fontana,et al. THE LACK OF INTENSE Lyα IN ULTRADEEP SPECTRA OF z = 7 CANDIDATES IN GOODS-S: IMPRINT OF REIONIZATION? , 2010, 1010.2754.
[112] M. Giavalisco,et al. A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 , 2013, Nature.
[113] G. Brammer,et al. WHAT ARE THE PROGENITORS OF COMPACT, MASSIVE, QUIESCENT GALAXIES AT z = 2.3? THE POPULATION OF MASSIVE GALAXIES AT z > 3 FROM NMBS AND CANDELS , 2013, 1301.7063.
[114] A. Szalay,et al. The Sloan Digital Sky Survey Quasar Survey: Quasar Luminosity Function from Data Release 3 , 2006, astro-ph/0601434.
[115] A. Dekel,et al. Merger rates of dark matter haloes , 2008, 0802.0198.
[116] Massimo Stiavelli,et al. The Hubble Ultra Deep Field , 2003, astro-ph/0607632.
[117] Princeton University.,et al. A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.
[118] A. Kinney,et al. Dust extinction of the stellar continua in starburst galaxies: The Ultraviolet and optical extinction law , 1994 .
[119] J. Dunlop,et al. NEW CONSTRAINTS ON COSMIC REIONIZATION FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2013, 1301.1228.
[120] A. Fontana,et al. THE EVOLUTION OF THE GALAXY STELLAR MASS FUNCTION AT z = 4–8: A STEEPENING LOW-MASS-END SLOPE WITH INCREASING REDSHIFT , 2015, 1507.05636.
[121] M. Franx,et al. A SPECTROSCOPIC REDSHIFT MEASUREMENT FOR A LUMINOUS LYMAN BREAK GALAXY AT z = 7.730 USING KECK/MOSFIRE , 2015, 1502.05399.
[122] S. M. Fall,et al. Evidence for a Massive Poststarburst Galaxy at z ~ 6.5 , 2005, astro-ph/0509768.
[123] S. Finkelstein,et al. ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 04/20/08 EVOLUTION OF LYMAN ALPHA GALAXIES: STELLAR POPULATIONS AT Z ∼ 0.3 , 2022 .
[124] I. Smail,et al. Redshift Distribution of the Faint Submillimeter Galaxy Population , 1999, astro-ph/9903142.
[125] V. Narayanan,et al. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.
[126] J. Kollmeier,et al. THE SPECTRALLY RESOLVED Lyα EMISSION OF THREE Lyα-SELECTED FIELD GALAXIES AT z ∼ 2.4 FROM THE HETDEX PILOT SURVEY , 2013, 1308.1957.
[127] M. Franx,et al. VERY BLUE UV-CONTINUUM SLOPE β OF LOW LUMINOSITY z ∼ 7 GALAXIES FROM WFC3/IR: EVIDENCE FOR EXTREMELY LOW METALLICITIES? , 2009, 0910.0001.
[128] S. Veilleux,et al. SEARCHING FOR z ∼ 7.7 Lyα EMITTERS IN THE COSMOS FIELD WITH NEWFIRM , 2011, 1106.6055.
[129] R. Bouwens,et al. Spectroscopy of z ~ 6 i-Dropout Galaxies: Frequency of Lyα Emission and the Sizes of Lyα-emitting Galaxies , 2006, astro-ph/0612454.
[130] D. Elbaz,et al. GOODS-HERSCHEL MEASUREMENTS OF THE DUST ATTENUATION OF TYPICAL STAR-FORMING GALAXIES AT HIGH REDSHIFT: OBSERVATIONS OF ULTRAVIOLET-SELECTED GALAXIES AT z ∼ 2 , 2011, 1107.2653.
[131] John L. Tonry,et al. A survey of galaxy redshifts: 4. The data. , 1983 .
[132] Arjun Dey,et al. First results from the Large-Area Lyman Alpha survey , 1999 .
[133] Nimish Hathi,et al. THE EVOLUTION OF THE GALAXY REST-FRAME ULTRAVIOLET LUMINOSITY FUNCTION OVER THE FIRST TWO BILLION YEARS , 2014, 1410.5439.
[134] P. Hibon,et al. SEARCH FOR z ∼ 7 Lyα EMITTERS WITH THE SUPRIME-CAM AT THE SUBARU TELESCOPE , 2011, 1109.3461.
[135] A. Dekel,et al. METALLICITY-DEPENDENT QUENCHING OF STAR FORMATION AT HIGH REDSHIFT IN SMALL GALAXIES , 2011, 1106.0301.
[136] R. Somerville,et al. CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.
[137] J. Hjorth,et al. Dust grain growth in the interstellar medium of 5 < z < 6.5 quasars , 2010, 1006.5466.
[138] R. Bouwens,et al. Clustering of i 775 Dropout Galaxies at z ~ 6 in GOODS and the UDF , 2006, astro-ph/0607398.
[139] Lennox L. Cowie,et al. HIGH-Z LYALPHA EMITTERS. I. A BLANK-FIELD SEARCH FOR OBJECTS NEAR REDSHIFT Z = 3.4 IN AND AROUND THE HUBBLE DEEP FIELD AND THE HAWAII DEEP FIELD SSA 22 , 1998 .
[140] R. Bouwens,et al. REIONIZATION AFTER PLANCK: THE DERIVED GROWTH OF THE COSMIC IONIZING EMISSIVITY NOW MATCHES THE GROWTH OF THE GALAXY UV LUMINOSITY DENSITY , 2015, 1503.08228.
[141] S. E. Persson,et al. EXPLORING THE z = 3–4 MASSIVE GALAXY POPULATION WITH ZFOURGE: THE PREVALENCE OF DUSTY AND QUIESCENT GALAXIES , 2014, 1405.1048.
[142] How small were the first cosmological objects , 1996, astro-ph/9603007.
[143] R. Bouwens,et al. Quantifying the UV-continuum slopes of galaxies to z ∼ 10 using deep Hubble+Spitzer/IRAC observations , 2015, 1510.01514.
[144] R. Wechsler,et al. USING CUMULATIVE NUMBER DENSITIES TO COMPARE GALAXIES ACROSS COSMIC TIME , 2013, 1308.3232.
[145] C. Conselice,et al. CANDELS: THE EVOLUTION OF GALAXY REST-FRAME ULTRAVIOLET COLORS FROM z = 8 TO 4 , 2011, 1110.3785.
[146] M. Ouchi,et al. KECK SPECTROSCOPY OF FAINT 3>z>7 LYMAN BREAK GALAXIES: A HIGH FRACTION OF LINE EMITTERS AT REDSHIFT SIX , 2010, 1009.5471.
[147] Richard G. McMahon,et al. A luminous quasar at a redshift of z = 7.085 , 2011, Nature.
[148] Richard G. McMahon,et al. A Redshift z = 6.56 Galaxy Behind the Cluster Abell 370 , 2002 .
[149] A. Fruchter,et al. HIGH-REDSHIFT GALAXIES IN THE HUBBLE DEEP FIELD : COLOUR SELECTION AND STAR FORMATION HISTORY TO Z 4 , 1996, astro-ph/9607172.
[150] P. Capak,et al. SPECTROSCOPIC OBSERVATION OF Lyα EMITTERS AT z ∼ 7.7 AND IMPLICATIONS ON RE-IONIZATION , 2014, 1402.3604.
[151] Edward J. Wollack,et al. First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.
[152] C. Baugh,et al. Predictions for the intrinsic UV continuum properties of star-forming galaxies and the implications for inferring dust extinction , 2012, 1206.2732.
[153] M. Dickinson,et al. z~4 Halpha Emitters in GOODS : Tracing the Dominant Mode for Growth of Galaxies , 2011, 1103.4124.
[154] Takashi Hattori,et al. A galaxy at a redshift z = 6.96 , 2006, Nature.
[155] Hilo,et al. Unveiling Dust-enshrouded Star Formation in the Early Universe: a Sub-mm Survey of the Hubble Deep Field , 1998, astro-ph/9806297.
[156] J. Hjorth,et al. Production of dust by massive stars at high redshift , 2011, 1108.0403.
[157] R. Bouwens,et al. UV Luminosity Functions at z~4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History , 2007, 0707.2080.
[158] M. Giavalisco,et al. NEW OBSERVATIONS OF z ∼ 7 GALAXIES: EVIDENCE FOR A PATCHY REIONIZATION , 2014, 1403.5466.
[159] M. Franx,et al. A candidate redshift z ≈ 10 galaxy and rapid changes in that population at an age of 500 Myr , 2009, Nature.
[160] S. Okamura,et al. STATISTICS OF 207 Lyα EMITTERS AT A REDSHIFT NEAR 7: CONSTRAINTS ON REIONIZATION AND GALAXY FORMATION MODELS , 2010, 1007.2961.
[161] J. Dunlop,et al. The z = 9-10 galaxy population in the Hubble Frontier Fields and CLASH surveys: the z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8 , 2016, 1602.05199.
[162] J. Diego,et al. A GEOMETRICALLY SUPPORTED z ∼ 10 CANDIDATE MULTIPLY IMAGED BY THE HUBBLE FRONTIER FIELDS CLUSTER A2744 , 2014, 1407.3769.
[163] O. Fèvre,et al. The galaxy luminosity function at z ≃ 6 and evidence for rapid evolution in the bright end from z ≃ 7 to 5 , 2014, 1411.2976.
[164] R. Bouwens,et al. A TENTATIVE DETECTION OF AN EMISSION LINE AT 1.6 μm FOR THE z ∼ 12 CANDIDATE UDFj-39546284 , 2013, 1301.0317.
[165] Michele Cirasuolo,et al. THE 2012 HUBBLE ULTRA DEEP FIELD (UDF12): OBSERVATIONAL OVERVIEW , 2012, 1212.1448.
[166] Cambridge,et al. The star formation rate of the Universe at z~ 6 from the Hubble Ultra-Deep Field , 2004, astro-ph/0403223.
[167] J. Dunlop,et al. Galaxies at z = 6 - 9 from the WFC3/IR imaging of the HUDF , 2009, 0909.2437.
[168] M. Nonino,et al. SPECTROSCOPIC OBSERVATIONS OF LYMAN BREAK GALAXIES AT REDSHIFTS ∼4, 5, AND 6 IN THE GOODS-SOUTH FIELD , 2009, 0901.4364.
[169] C. C. Steidel,et al. NARROWBAND IMAGING OF ESCAPING LYMAN-CONTINUUM EMISSION IN THE SSA22 FIELD, , 2011, 1102.0286.
[170] R. Bouwens,et al. z ≳ 7 GALAXIES WITH RED SPITZER/IRAC [3.6]–[4.5] COLORS IN THE FULL CANDELS DATA SET: THE BRIGHTEST-KNOWN GALAXIES AT z ∼ 7–9 AND A PROBABLE SPECTROSCOPIC CONFIRMATION AT z = 7.48 , 2015, 1506.00854.
[171] J. Bolton,et al. On the rapid demise of Ly α emitters at redshift z ≳ 7 due to the increasing incidence of optically thick absorption systems , 2012, 1208.4417.
[172] Matthew Colless,et al. Three Lyα Emitters at z ≈ 6: Early GMOS/Gemini Data from the GLARE Project , 2003, astro-ph/0312459.
[173] D. Wake,et al. THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.
[174] S. Wilkins,et al. The ultraviolet properties of star-forming galaxies – I. HST WFC3 observations of very high redshift galaxies , 2011, 1106.5977.
[175] S. Finkelstein,et al. CONNECTING THE DOTS: TRACKING GALAXY EVOLUTION USING CONSTANT CUMULATIVE NUMBER DENSITY AT 3 ≤ z ≤ 7 , 2015, 1507.00713.
[176] S. Okamura,et al. Clustering of Lyman Break Galaxies at z = 4 and 5 in the Subaru Deep Field: Luminosity Dependence of the Correlation Function Slope , 2005, astro-ph/0509564.
[177] M. L. N. Ashby,et al. THE MOST LUMINOUS z ∼ 9–10 GALAXY CANDIDATES YET FOUND: THE LUMINOSITY FUNCTION, COSMIC STAR-FORMATION RATE, AND THE FIRST MASS DENSITY ESTIMATE AT 500 Myr , 2013, 1309.2280.
[178] J. Dunlop,et al. CANDELS: THE CONTRIBUTION OF THE OBSERVED GALAXY POPULATION TO COSMIC REIONIZATION , 2012, 1206.0735.
[179] T. Morokuma,et al. Lyα EMITTERS AT z = 7 IN THE SUBARU/XMM-NEWTON DEEP SURVEY FIELD: PHOTOMETRIC CANDIDATES AND LUMINOSITY FUNCTION , 2010, 1008.4842.
[180] R. Ellis,et al. A new multifield determination of the galaxy luminosity function at z = 7-9 incorporating the 2012 Hubble Ultra-Deep Field imaging , 2012, 1212.5222.
[181] R. Wechsler,et al. THE AVERAGE STAR FORMATION HISTORIES OF GALAXIES IN DARK MATTER HALOS FROM z = 0–8 , 2012, 1207.6105.
[182] Edinburgh,et al. COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.
[183] L. Pentericci,et al. Faint AGNs at z > 4 in the CANDELS GOODS-S field: looking for contributors to the reionization of the Universe , 2015, 1502.02562.
[184] H. Ferguson,et al. THE QUENCHING OF THE ULTRA-FAINT DWARF GALAXIES IN THE REIONIZATION ERA , 2014, 1410.0681.
[185] D. Narayanan,et al. Dusty Star Forming Galaxies at High Redshift , 2014, 1402.1456.
[186] R. B. Partridge,et al. Are Young Galaxies Visible , 1967 .
[187] N. Konidaris,et al. LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.
[188] R. Bouwens,et al. UV-CONTINUUM SLOPES OF >4000 z ∼ 4–8 GALAXIES FROM THE HUDF/XDF, HUDF09, ERS, CANDELS-SOUTH, AND CANDELS-NORTH FIELDS , 2013, 1306.2950.
[189] S. E. Persson,et al. DISCOVERY OF LYMAN BREAK GALAXIES AT z ∼ 7 FROM THE zFourGE SURVEY , 2013, 1304.4227.
[190] Northwestern,et al. The difficulty of getting high escape fractions of ionizing photons from high-redshift galaxies: A view from the FIRE cosmological simulations , 2015, 1503.07880.
[191] Massimo Stiavelli,et al. THE CHANGING Lyα OPTICAL DEPTH IN THE RANGE 6 < z < 9 FROM THE MOSFIRE SPECTROSCOPY OF Y-DROPOUTS , 2013 .
[192] M. C. Cooper,et al. High molecular gas fractions in normal massive star-forming galaxies in the young Universe , 2010, Nature.
[193] Astronomy,et al. Limits on the luminosity function of Ly alpha emitters at z=7.7 , 2009, 0907.3354.
[194] B. Weiner,et al. A Lyα GALAXY AT REDSHIFT z = 6.944 IN THE COSMOS FIELD , 2012, 1205.3161.
[195] Michele Cirasuolo,et al. THE ABUNDANCE OF STAR-FORMING GALAXIES IN THE REDSHIFT RANGE 8.5–12: NEW RESULTS FROM THE 2012 HUBBLE ULTRA DEEP FIELD CAMPAIGN , 2012, 1211.6804.
[196] M. Giavalisco,et al. The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging , 2003, astro-ph/0309105.
[197] M. Franx,et al. TRACING GALAXIES THROUGH COSMIC TIME WITH NUMBER DENSITY SELECTION , 2013, 1302.1195.
[198] T. Greif,et al. The First Stars , 2003, astro-ph/0311019.
[199] R. Ellis,et al. Early star-forming galaxies and the reionization of the Universe , 2010, Nature.
[200] S. Okamura,et al. GAS MOTION STUDY OF Lyα EMITTERS AT z ∼ 2 USING FUV AND OPTICAL SPECTRAL LINES, , 2012, 1206.2316.
[201] The Rest-Frame Ultraviolet Luminosity Density of Star-forming Galaxies at Redshifts z > 3.5 , 2003, astro-ph/0309065.
[202] J. Gardner,et al. A Deep Imaging and Spectroscopic Survey of Faint Galaxies , 1991 .
[203] Martin J. Rees,et al. Radiative Transfer in a Clumpy Universe. III. The Nature of Cosmological Ionizing Sources , 1998, astro-ph/9809058.
[204] C. Conselice,et al. A DEEP HUBBLE SPACE TELESCOPE SEARCH FOR ESCAPING LYMAN CONTINUUM FLUX AT z ∼ 1.3: EVIDENCE FOR AN EVOLVING IONIZING EMISSIVITY , 2010, 1001.3412.
[205] L. J. Storrie-Lombardi,et al. Keck Spectroscopy and NICMOS Photometry of a Redshift z = 5.60 Galaxy* , 1998 .
[206] J. Peacock,et al. Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.
[207] K. Schawinski,et al. The physical nature of Lyα-emitting galaxies at z = 3.1 , 2006, astro-ph/0603244.
[208] Carnegie Observatories,et al. A star‐forming galaxy at z= 5.78 in the Chandra Deep Field South , 2003 .
[209] E. Vanzella,et al. Can the intergalactic medium cause a rapid drop in Lyα emission at z > 6? , 2014, 1406.6373.
[210] J. Dunlop,et al. New redshift z ≃ 9 galaxies in the Hubble Frontier Fields: implications for early evolution of the UV luminosity density , 2014, 1412.1472.
[211] R. Windhorst,et al. The Major Sources of the Cosmic Reionizing Background at z ≃ 6 , 2003, astro-ph/0312572.
[212] S. Khochfar,et al. The First Billion Years project: the escape fraction of ionizing photons in the epoch of reionization , 2015, 1501.01967.
[213] S. Okamura,et al. The Subaru/XMM-Newton Deep Survey (SXDS). IV. Evolution of Lyα Emitters from z = 3.1 to 5.7 in the 1 deg2 Field: Luminosity Functions and AGN , 2007, 0707.3161.
[214] Mark Dickinson,et al. KECK/MOSFIRE SPECTROSCOPY OF z = 7–8 GALAXIES: Lyα EMISSION FROM A GALAXY AT z = 7.66 , 2016, 1602.02160.
[215] P. Hewett,et al. How neutral is the intergalactic medium surrounding the redshift z = 7.085 quasar ULAS J1120+0641? , 2011, 1106.6089.
[216] A. Fontana,et al. SPECTROSCOPIC CONFIRMATION OF z ∼ 7 LYMAN BREAK GALAXIES: PROBING THE EARLIEST GALAXIES AND THE EPOCH OF REIONIZATION , 2011, 1107.1376.
[217] O. Ilbert,et al. The Interstellar Medium In Galaxies Seen A Billion Years After The Big Bang , 2015, 1503.07596.
[218] D. Elbaz,et al. A DEEP SEARCH FOR MOLECULAR GAS IN TWO MASSIVE LYMAN BREAK GALAXIES AT z = 3 AND 4: VANISHING CO-EMISSION DUE TO LOW METALLICITY? , 2013, 1309.5448.
[219] R. Bouwens,et al. THE SPECTRAL ENERGY DISTRIBUTIONS OF z ∼ 8 GALAXIES FROM THE IRAC ULTRA DEEP FIELDS: EMISSION LINES, STELLAR MASSES, AND SPECIFIC STAR FORMATION RATES AT 650 MYR , 2012, 1209.3037.
[220] R. Bouwens,et al. Lyα EMISSION FROM A LUMINOUS z = 8.68 GALAXY: IMPLICATIONS FOR GALAXIES AS TRACERS OF COSMIC REIONIZATION , 2015, 1507.02679.
[221] A. Fontana,et al. THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). III. A CENSUS OF Lyα EMISSION AT z ≳ 7 ?> FROM HST SPECTROSCOPY , 2015, 1511.04205.
[222] Marijn Franx,et al. THE STELLAR MASS DENSITY AND SPECIFIC STAR FORMATION RATE OF THE UNIVERSE AT z ∼ 7 , 2009, 0909.3517.
[223] M. Franx,et al. Galaxies at z~6: The UV Luminosity Function and Luminosity Density from 506 UDF, UDF-Ps, and GOODS i-dropouts , 2005, astro-ph/0509641.
[224] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[225] R. Davé,et al. Constraints on physical properties of z ∼ 6 galaxies using cosmological hydrodynamic simulations , 2006, astro-ph/0607039.
[226] R. Zinn,et al. Compositions of halo clusters and the formation of the galactic halo , 1978 .
[227] J. Dunlop,et al. High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey , 1998, Nature.
[228] Simulating Cosmic Reionization at Large Scales I: the Geometry of Reionization , 2005, astro-ph/0512187.
[229] S. Veilleux,et al. THE LUMINOSITY FUNCTION OF Lyα EMITTERS AT REDSHIFT z = 7.7 , 2010, 1006.3071.
[230] S.Cole,et al. The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.
[231] P. Schechter. An analytic expression for the luminosity function for galaxies , 1976 .
[232] P. Madau,et al. Evidence of patchy hydrogen reionization from an extreme Lyα trough below redshift six , 2014, 1407.4850.
[233] Charles L. Bennett,et al. High-Latitude Galactic Emission in the COBE Differential Microwave Radiometer 2 Year Sky Maps , 1996 .
[234] IoA,et al. Spitzer and Hubble Space Telescope Constraints on the Physical Properties of the z ~ 7 Galaxy Strongly Lensed by A2218 , 2004, astro-ph/0411117.
[235] C. Maraston. Evolutionary population synthesis: models, analysis of the ingredients and application to high‐z galaxies , 2004, astro-ph/0410207.
[236] R. Bouwens,et al. FIRST FRONTIER FIELD CONSTRAINTS ON THE COSMIC STAR FORMATION RATE DENSITY AT z ∼ 10—THE IMPACT OF LENSING SHEAR ON COMPLETENESS OF HIGH-REDSHIFT GALAXY SAMPLES , 2014, 1409.1228.
[237] I. Reid,et al. THE SURFACE DENSITIES OF DISK BROWN DWARFS IN JWST SURVEYS , 2015, 1510.05019.
[238] K. Nagamine,et al. Duty cycle and the increasing star formation history of z ≥ 6 galaxies , 2012, 1204.4846.
[239] M. Dickinson,et al. Hubble Ultra Deep Field-JD2: Mid-Infrared Evidence for a z ~ 2 Luminous Infrared Galaxy , 2007, 0705.0660.
[240] Timothy M. Heckman,et al. Dust Absorption and the Ultraviolet Luminosity Density at z ≈ 3 as Calibrated by Local Starburst Galaxies , 1999, astro-ph/9903054.
[241] Mauro Giavalisco,et al. Lyman-Break Galaxies , 2002 .
[242] S. Malhotra,et al. SEARCH FOR z ∼ 6.96 Lyα EMITTERS WITH MAGELLAN/IMACS IN THE COSMOS FIELD , 2011, 1109.0009.
[243] Arjun Dey,et al. Spectroscopic Confirmation of Three Redshift z ≈ 5.7 Lyα Emitters from the Large-Area Lyman Alpha Survey , 2002, astro-ph/0209544.
[244] Cambridge,et al. Lyman break galaxies and the star formation rate of the Universe at z≈ 6 , 2003 .
[245] R. Bouwens,et al. HIGH-PRECISION PHOTOMETRIC REDSHIFTS FROM SPITZER/IRAC: EXTREME [3.6] – [4.5] COLORS IDENTIFY GALAXIES IN THE REDSHIFT RANGE z ∼ 6.6 – 6.9 , 2014, 1412.0663.
[246] A. Fontana,et al. THE GREAT OBSERVATORIES ORIGINS DEEP SURVEY: CONSTRAINTS ON THE LYMAN CONTINUUM ESCAPE FRACTION DISTRIBUTION OF LYMAN-BREAK GALAXIES AT 3.4 < z < 4.5 , 2010, 1009.1140.
[247] A. Koekemoer,et al. RAPID DECLINE OF Lyα EMISSION TOWARD THE REIONIZATION ERA , 2014, 1405.4869.
[248] A. Fontana,et al. A STUDY OF MASSIVE AND EVOLVED GALAXIES AT HIGH REDSHIFT , 2014, 1408.3684.
[249] R. Bouwens,et al. z ∼ 7 GALAXIES IN THE HUDF: FIRST EPOCH WFC3/IR RESULTS , 2009, 0909.1806.
[250] R. Rosenfeld. Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.
[251] B. Robertson,et al. Spectroscopic detections of C iii] λ1909 Å at z ≃ 6–7: a new probe of early star-forming galaxies and cosmic reionization , 2014, 1408.3649.
[252] A. Cimatti,et al. Star formation rates and masses of z∼ 2 galaxies from multicolour photometry , 2010, 1004.4546.
[253] I. Smail,et al. A Redshift Survey of the Submillimeter Galaxy Population , 2004, astro-ph/0412573.
[254] J. Walsh,et al. A LYMAN BREAK GALAXY IN THE EPOCH OF REIONIZATION FROM HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY , 2013, 1302.7005.
[255] H. Hildebrandt,et al. The UV galaxy luminosity function at z = 3–5 from the CFHT Legacy Survey Deep fields , 2010, 1009.0758.
[256] I. Smail,et al. A Deep Submillimeter Survey of Lensing Clusters: A New Window on Galaxy Formation and Evolution , 1997, astro-ph/9708135.
[257] Ralf Bender,et al. The mass of galaxies at low and high redshift : proceedings of the European Southern Observatory and Universitäts-Sternwarte München workshop held in Venice, Italy, 24-26 October 2001 , 2003 .
[258] J. Ostriker,et al. Reionization of the Universe and the Early Production of Metals , 1996, astro-ph/9612127.
[259] J. Kollmeier,et al. The Spectrally Resolved Lyman-Alpha Emission Of Three Lyman-Alpha-Selected Field Galaxies At Z Similar To 2.4 From The HETDEX Pilot Survey , 2013 .
[260] J. Schaye,et al. Spatially adaptive radiation-hydrodynamical simulations of galaxy formation during cosmological reionization , 2015, 1501.01980.
[261] An Overdensity of Galaxies at z = 5.9 ? 0.2 in the Hubble Ultra Deep Field Confirmed Using the ACS Grism , 2005, astro-ph/0501478.
[262] Search Techniques for Distant Galaxies , 1999, astro-ph/9912082.
[263] C. Steidel,et al. A STEEP FAINT-END SLOPE OF THE UV LUMINOSITY FUNCTION AT z ∼ 2–3: IMPLICATIONS FOR THE GLOBAL STELLAR MASS DENSITY AND STAR FORMATION IN LOW-MASS HALOS , 2008, 0810.2788.
[264] F. Mannucci,et al. Evidence of a fast evolution of the UV luminosity function beyond redshift 6 from a deep HAWK-I survey of the GOODS-S field , 2009, 0909.2853.
[265] S. Djorgovski,et al. Discovery of a probable galaxy with a redshift of 3.218 , 1985 .
[266] R. Bouwens,et al. Star Formation at z ~ 6: i-Dropouts in the Advanced Camera for Surveys Guaranteed Time Observation Fields , 2003 .
[267] Joel R. Primack,et al. Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.
[268] Yu Feng,et al. Interpreting the observed UV continuum slopes of high-redshift galaxies , 2013, 1302.1387.
[269] STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[270] A. Fontana,et al. SPECTROSCOPIC CONFIRMATION OF TWO LYMAN BREAK GALAXIES AT REDSHIFT BEYOND 7 , 2010, 1011.5500.
[271] J. Tyson,et al. Deep CCD survey - Galaxy luminosity and color evolution , 1988 .
[272] Max Pettini,et al. The Direct Detection of Lyman Continuum Emission from Star-forming Galaxies at z~3 , 2006, astro-ph/0606635.
[273] Robin Ciardullo,et al. THE HETDEX PILOT SURVEY. III. THE LOW METALLICITIES OF HIGH-REDSHIFT Lyα GALAXIES , 2010, 1011.0431.
[274] A dusty, normal galaxy in the epoch of reionization , 2015, Nature.
[275] C. Conselice,et al. The mass evolution of the first galaxies: stellar mass functions and star formation rates at 4 < z < 7 in the CANDELS GOODS-South field , 2014, 1408.2527.
[276] A. Fontana,et al. The blue UV slopes of z ~ 4 Lyman break galaxies: implications for the corrected star formation rate density , 2011, 1109.1757.
[277] K. Shimasaku,et al. FIRST SPECTROSCOPIC EVIDENCE FOR HIGH IONIZATION STATE AND LOW OXYGEN ABUNDANCE IN Lyα EMITTERS, , 2012, 1208.3260.
[278] J. Rhoads,et al. The GLARE Survey – II. Faint z≈ 6 Lyα line emitters in the HUDF , 2007, astro-ph/0701211.
[279] M. Franx,et al. UV-CONTINUUM SLOPES AT z ∼ 4–7 FROM THE HUDF09+ERS+CANDELS OBSERVATIONS: DISCOVERY OF A WELL-DEFINED UV COLOR–MAGNITUDE RELATIONSHIP FOR z ⩾ 4 STAR-FORMING GALAXIES , 2011, 1109.0994.
[280] Searching for z ≃ 6 Objects with the Hubble Space Telescope Advanced Camera for Surveys: Preliminary Analysis of a Deep Parallel Field , 2002, astro-ph/0212179.
[281]
J. Dunlop,et al.
Massive Galaxies at Redshifts 5
[282] J. Dunlop,et al. The unbiased measurement of ultraviolet spectral slopes in low-luminosity galaxies at z ≈ 7 , 2012, 1209.4636.
[283] M. Donahue,et al. EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN z ∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES , 2013, 1307.5847.