A semi-implicit discrete-continuum coupling method for porous media based on the effective stress principle at finite strain

Abstract A finite strain multiscale hydro-mechanical model is established via an extended Hill–Mandel condition for two-phase porous media. By assuming that the effective stress principle holds at unit cell scale, we established a micro-to-macro transition that links the micromechanical responses at grain scale to the macroscopic effective stress responses, while modeling the fluid phase only at the macroscopic continuum level. We propose a dual-scale semi-implicit scheme, which treats macroscopic responses implicitly and microscopic responses explicitly. The dual-scale model is shown to have good convergence rate, and is stable and robust. By inferring effective stress measure and poro-plasticity parameters, such as porosity, Biot’s coefficient and Biot’s modulus from micro-scale simulations, the multiscale model is able to predict effective poro-elasto-plastic responses without introducing additional phenomenological laws. The performance of the proposed framework is demonstrated via a collection of representative numerical examples. Fabric tensors of the representative elementary volumes are computed and analyzed via the anisotropic critical state theory when strain localization occurs.

[1]  William G. Gray,et al.  The solid phase stress tensor in porous media mechanics and the Hill–Mandel condition , 2009 .

[2]  Ronaldo I. Borja,et al.  Factor of safety in a partially saturated slope inferred from hydro‐mechanical continuum modeling , 2012 .

[3]  Peter Wriggers,et al.  Computational micro-macro material testing , 2001 .

[4]  D. V. Griffiths,et al.  SLOPE STABILITY ANALYSIS BY FINITE ELEMENTS , 1999 .

[5]  WaiChing Sun,et al.  Multiscale method for characterization of porous microstructures and their impact on macroscopic effective permeability , 2011 .

[6]  R. M. Bowen,et al.  Incompressible porous media models by use of the theory of mixtures , 1980 .

[7]  Christian Miehe,et al.  A framework for micro–macro transitions in periodic particle aggregates of granular materials , 2004 .

[8]  Christian Miehe,et al.  Homogenization and two‐scale simulations of granular materials for different microstructural constraints , 2010 .

[9]  Jennifer S. Curtis,et al.  Modeling particle‐laden flows: A research outlook , 2004 .

[10]  R. Regueiro,et al.  Implicit dynamic three-dimensional finite element analysis of an inelastic biphasic mixture at finite strain: Part 1: Application to a simple geomaterial , 2010 .

[11]  Ronaldo I. Borja,et al.  Calculating the effective permeability of sandstone with multiscale lattice Boltzmann/finite element simulations , 2006 .

[12]  Stefan Pirker,et al.  Hybrid parallelization of the LIGGGHTS open-source DEM code , 2015 .

[13]  Andrew J. Whittle,et al.  Formulation of a unified constitutive model for clays and sands , 1999 .

[14]  Thomas J. R. Hughes,et al.  Implicit-explicit finite elements in nonlinear transient analysis , 1979 .

[15]  Majid T. Manzari,et al.  SIMPLE PLASTICITY SAND MODEL ACCOUNTING FOR FABRIC CHANGE EFFECTS , 2004 .

[16]  Nickolas J. Themelis,et al.  ANISOTROPIC ELASTOPLASTIC BOUNDING SURFACE MODEL FOR COHESIVE SOILS , 2002 .

[17]  S. A. Galindo-Torres,et al.  A micro-mechanical approach for the study of contact erosion , 2015 .

[18]  C. Truesdell,et al.  The Classical Field Theories , 1960 .

[19]  Ning Guo,et al.  A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media , 2014 .

[20]  Gaël Combe,et al.  Two-scale modeling of granular materials: a DEM-FEM approach , 2011 .

[21]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their application to fault zone transients , 2008 .

[22]  Alejandro Mota,et al.  A class of variational strain‐localization finite elements , 2005 .

[23]  S. Kramer,et al.  Investigation of Cyclic Liquefaction with Discrete Element Simulations , 2014, 1812.10388.

[24]  A. Bishop The use of the Slip Circle in the Stability Analysis of Slopes , 1955 .

[25]  Yang Liu,et al.  A nonlocal multiscale discrete‐continuum model for predicting mechanical behavior of granular materials , 2016 .

[26]  D. Wood Soil Behaviour and Critical State Soil Mechanics , 1991 .

[27]  WaiChing Sun,et al.  A stabilized assumed deformation gradient finite element formulation for strongly coupled poromechanical simulations at finite strain , 2013 .

[28]  P. A. Cundall,et al.  LBM–DEM modeling of fluid–solid interaction in porous media , 2013 .

[29]  WaiChing Sun,et al.  A stabilized finite element formulation for monolithic thermo‐hydro‐mechanical simulations at finite strain , 2015 .

[30]  WaiChing Sun,et al.  A multiscale DEM-LBM analysis on permeability evolutions inside a dilatant shear band , 2013 .

[31]  T. Ng Input Parameters of Discrete Element Methods , 2006 .

[32]  D. K. Paul,et al.  Evaluation ofu -w andu - π finite element methods for the dynamic response of saturated porous media using one-dimensional models , 1986 .

[33]  Ted Belytschko,et al.  Elements with embedded localization zones for large deformation problems , 1988 .

[34]  Serge Leroueil,et al.  An efficient technique for generating homogeneous specimens for DEM studies , 2003 .

[35]  J. Rutqvist,et al.  Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2 , 2011 .

[36]  Kenji Ishihara,et al.  Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. , 1998 .

[37]  Jean-Yves Delenne,et al.  A 3D DEM-LBM approach for the assessment of the quick condition for sands , 2009 .

[38]  A. Yu,et al.  Discrete particle simulation of particulate systems: Theoretical developments , 2007 .

[39]  Harm Askes,et al.  Representative volume: Existence and size determination , 2007 .

[40]  Ning Guo,et al.  Unique critical state characteristics in granular media considering fabric anisotropy , 2013 .

[41]  Yannis F. Dafalias,et al.  Numerical simulation of fully saturated porous materials , 2008 .

[42]  Cass T. Miller,et al.  Averaging Theory for Description of Environmental Problems: What Have We Learned? , 2013, Advances in water resources.

[43]  Dissipation consistent fabric tensor definition from DEM to continuum for granular media , 2015 .

[44]  Majid T. Manzari,et al.  A critical state two-surface plasticity model for sands , 1997 .

[45]  B. Schrefler,et al.  A formulation for an unsaturated porous medium undergoing large inelastic strains , 2002 .

[46]  Eugenio Oñate,et al.  Combination of discrete element and finite element methods for dynamic analysis of geomechanics problems , 2004 .

[47]  Yannis F. Dafalias,et al.  Anisotropic Critical State Theory: Role of Fabric , 2012 .

[48]  Richard A. Regueiro,et al.  Dynamics of porous media at finite strain , 2004 .

[49]  Harry R. Millwater,et al.  A comparison of different methods for calculating tangent-stiffness matrices in a massively parallel computational peridynamics code , 2014 .

[50]  F. Bourrier,et al.  Discrete modeling of granular soils reinforcement by plant roots , 2013 .

[51]  A. Schofield,et al.  Critical State Soil Mechanics , 1968 .

[52]  J. Prévost Nonlinear transient phenomena in saturated porous media , 1982 .

[53]  Emanuele Catalano,et al.  Pore‐scale modeling of fluid‐particles interaction and emerging poromechanical effects , 2013, 1304.4895.

[54]  Jean H. Prevost,et al.  Implicit-explicit schemes for nonlinear consolidation , 1983 .

[55]  J. Rudnicki,et al.  A sequential DEM-LBM multiscale analysis on permeability evolutions inside a dilatant shear band. , 2012 .

[56]  R. Borja,et al.  A mathematical framework for finite strain elastoplastic consolidation Part 1: Balance laws, variational formulation, and linearization , 1995 .

[57]  P. Cundall,et al.  Lattice Boltzmann modeling of pore‐scale fluid flow through idealized porous media , 2011 .

[58]  Frédéric-Victor Donzé,et al.  YADE‐OPEN DEM: an open‐source software using a discrete element method to simulate granular material , 2009 .

[59]  Peter Wriggers,et al.  Homogenization of granular material modeled by a three-dimensional discrete element method , 2008 .

[60]  Mourad Zeghal,et al.  COUPLED CONTINUUM-DISCRETE MODEL FOR SATURATED GRANULAR SOILS , 2005 .

[61]  Jun Li,et al.  Coupled DEM–LBM simulation of internal fluidisation induced by a leaking pipe , 2014 .

[62]  Mario J. Martinez,et al.  Coupled multiphase flow and geomechanics model for analysis of joint reactivation during CO2 sequestration operations , 2013 .

[63]  WaiChing Sun,et al.  Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear‐enhanced compaction bands using multiscale computations , 2011 .

[64]  J. Rice,et al.  Some basic stress diffusion solutions for fluid‐saturated elastic porous media with compressible constituents , 1976 .

[65]  D. R. J. Owen,et al.  Numerical Simulations of Irregular Particle Transport in Turbulent Flows Using Coupled LBM-DEM , 2007 .

[66]  Andrzej Truty,et al.  Stabilized mixed finite element formulations for materially nonlinear partially saturated two-phase media , 2006 .

[67]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[68]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[69]  Amos Nur,et al.  An exact effective stress law for elastic deformation of rock with fluids , 1971 .

[70]  Katalin Bagi,et al.  Stress and strain in granular assemblies , 1996 .

[71]  Francisco Armero,et al.  Formulation and finite element implementation of a multiplicative model of coupled poro-plasticity at finite strains under fully saturated conditions , 1999 .

[72]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[73]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[74]  R. Borja,et al.  Elastoplastic consolidation at finite strain part 2: finite element implementation and numerical examples , 1998 .

[75]  S. Nemat-Nasser,et al.  A Micromechanical Description of Granular Material Behavior , 1981 .

[76]  S. Luding,et al.  Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation , 2013, 1301.0752.

[77]  N. N. Yanenko,et al.  The Method of Fractional Steps , 1971 .