Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta

The Yukawa potential is often used to compute bound-state normalizations and energy levels of neutral atoms. By using the generalized parametric Nikiforov-Uvarov method, we obtain approximate analytical solutions of the radial Schrödinger equation for the Yukawa potential. The energy eigenvalues and the corresponding eigenfunctions are calculated in closed forms. Some numerical results are presented and show that these results are in good agreement with those obtained previously by other methods. Also, we find the energy levels of the familiar pure Coulomb potential energy levels when the screening parameter of the Yukawa potential goes to zero.

[1]  M. Hamzavi,et al.  Exact S‐wave solution of the trigonometric pöschl‐teller potential , 2012, 1210.5894.

[2]  M. Hamzavi,et al.  A SEMIRELATIVISTIC TREATMENT OF SPINLESS PARTICLES SUBJECT TO THE YUKAWA POTENTIAL WITH ARBITRARY ANGULAR MOMENTA , 2012, 1203.1747.

[3]  Sameer M. Ikhdair,et al.  Approximate κ-state solutions to the Dirac-Yukawa problem based on the spin and pseudospin symmetry , 2012, 1203.2023.

[4]  R. Sever,et al.  The Dirac–Yukawa problem in view of pseudospin symmetry , 2011 .

[5]  M. Hamzavi,et al.  Solution of Dirac Equation with Killingbeck Potential by Using Wave Function Ansatz Method under Spin Symmetry Limit , 2011 .

[6]  M. Setare,et al.  Spin symmetry of the Dirac equation with the Yukawa potential , 2010 .

[7]  R. Sever,et al.  Polynomial solutions of the Mie-type potential in the D-dimensional Schrödinger equation , 2008 .

[8]  H. Hassanabadi,et al.  SPECTRUM OF BARYONS AND SPIN–ISOSPIN DEPENDENCE , 2008 .

[9]  V. Mandelzweig,et al.  Analytic presentation of a solution of the Schrödinger equation , 2007, 0710.5042.

[10]  R. Sever,et al.  A New Approach to the Exact Solutions of the Effective Mass Schrödinger Equation , 2007, 0807.2304.

[11]  S. Dong,et al.  Algebraic Approach to the Position-Dependent Mass SCHRÖDINGER Equation for a Singular Oscillator , 2007 .

[12]  S. Dong,et al.  Arbitrary l-state solutions of the rotating Morse potential through the exact quantization rule method , 2007 .

[13]  I. Boztosun,et al.  Exact analytical solutions to the Kratzer potential by the asymptotic iteration method , 2007 .

[14]  R. Sever,et al.  Exact solutions of the radial Schrödinger equation for some physical potentials , 2007, quant-ph/0702141.

[15]  R. Sever,et al.  Exact Polynomial Solution of $${\cal P}{\cal T}$/Non-${\cal P}{\cal T}$$- Symmetric and Non-Hermitian Modified Woods–Saxon Potential by the Nikiforov–Uvarov Method , 2007 .

[16]  S. Dong EXACT QUANTIZATION RULE AND ITS APPLICATIONS TO PHYSICAL POTENTIALS , 2007 .

[17]  R. Sever,et al.  Exact polynomial eigensolutions of the Schrodinger equation for the pseudoharmonic potential , 2006, quant-ph/0611183.

[18]  I. Boztosun,et al.  ACCURATE ITERATIVE AND PERTURBATIVE SOLUTIONS OF THE YUKAWA POTENTIAL , 2006 .

[19]  R. Sever,et al.  A perturbative treatment for the bound states of the Hellmann potential , 2006, quant-ph/0603205.

[20]  Jiaguang Han,et al.  Bound state solutions of the Schrodinger equation for modified Kratzer's molecular potential , 2006 .

[21]  R. Sever,et al.  A PERTURBATIVE TREATMENT FOR THE ENERGY LEVELS OF NEUTRAL ATOMS , 2005, quant-ph/0511209.

[22]  K. Köksal,et al.  An alternative treatment for Yukawa-type potentials , 2005, quant-ph/0507098.

[23]  E. Karimi,et al.  Algebraic approach to the Kratzer potential , 2006 .

[24]  Adel F. Antippa,et al.  Analytic solution of the Schrödinger equation for the Coulomb-plus-linear potential. I. The wave functions , 2005 .

[25]  K. Oyewumi Analytical Solutions of the Kratzer-Fues Potential in an Arbitrary Number of Dimensions , 2005 .

[26]  T. K. Das,et al.  Analytic superpotential for Yukawa potential by perturbation of the Riccati equation , 2001 .

[27]  S. Dong Schrödinger Equation with the Potential V(r) = Ar-4 + Br-3 + Cr-2 + Dr-1 , 2001 .

[28]  S. Dong Exact Solutions of the Two-Dimensional Schrödinger Equation with Certain Central Potentials , 2000, quant-ph/0003100.

[29]  S. Özçelik,et al.  Exact solutions of the radial Schrödinger equation for inverse-power potentials , 1991 .

[30]  Y. P. Varshni,et al.  Shifted large-N expansion for the energy levels of neutral atoms , 1986 .

[31]  U. Sukhatme,et al.  Bound States of the Yukawa Potential via the Shifted 1/$N$ Expansion Technique , 1984 .

[32]  C. S. Lai,et al.  On the energy levels of neutral atoms , 1984 .

[33]  Y. P. Varshni,et al.  An analytic approximation for the energy levels of neutral atoms , 1983 .

[34]  R. Liboff Introductory quantum mechanics , 1980 .

[35]  M. Nieto HYDROGEN ATOM AND RELATIVISTIC PI MESIC ATOM IN N SPACE DIMENSIONS , 1979 .

[36]  J. Killingbeck Perturbation theory without wavefunctions , 1978 .

[37]  C. H. Mehta,et al.  Nonperturbative approach to screened Coulomb potentials , 1978 .

[38]  R. Greene,et al.  Variational wave functions for a screened Coulomb potential , 1976 .

[39]  H. Graboske,et al.  BOUND EIGENSTATES OF THE STATIC SCREENED COULOMB POTENTIAL. , 1970 .