Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates

An algorithm for linear scaling geometry optimisation and transition state search using hybrid delocalised internal coordinates (HDLC) has been developed and implemented in the context of a semiempirical quantum-chemistry program (MNDO) and a modular quantum-mechanical/molecular-mechanical (QM/MM) package (ChemShell). Linear scaling is achieved by a divide-and-conquer approach: the system is partitioned into user-defined fragments, and all coordinate manipulations are performed exclusively within these fragments. The optimiser employs a limited-memory quasi-Newton algorithm (L-BFGS) for energy minimisation, and a microiterative scheme for transition state search using a Hessian eigenmode-following algorithm (P-RFO) for the reaction core and the L-BFGS algorithm for the environment. There are automatic procedures for generating redundant sets of internal coordinates and non-redundant sets of HDLC from Cartesian coordinates. The input to the optimiser consists of the initial Cartesian geometry, the fragmentation of the system, the choice of the working coordinate system, and any constraints to be imposed in Cartesian and/or internal coordinates. The optimiser requires an external function that provides the energy and gradient at a given Cartesian geometry. Systems with thousands of atoms have been optimised, and transition states of a model enzymatic reaction have been determined.

[1]  M. Frisch,et al.  Using redundant internal coordinates to optimize equilibrium geometries and transition states , 1996, J. Comput. Chem..

[2]  R. Ahlrichs,et al.  Geometry optimization in generalized natural internal coordinates , 1999 .

[3]  Jon Baker,et al.  Techniques for geometry optimization: A comparison of cartesian and natural internal coordinates , 1993, J. Comput. Chem..

[4]  Gustavo E. Scuseria,et al.  What is the Best Alternative to Diagonalization of the Hamiltonian in Large Scale Semiempirical Calculations , 1999 .

[5]  J. Nocedal Updating Quasi-Newton Matrices With Limited Storage , 1980 .

[6]  Peter Pulay,et al.  Ab initio geometry optimization for large molecules , 1997, J. Comput. Chem..

[7]  S. L. Dixon,et al.  Semiempirical molecular orbital calculations with linear system size scaling , 1996 .

[8]  Peter Pulay,et al.  An efficient direct method for geometry optimization of large molecules in internal coordinates , 1998 .

[9]  Jon Baker,et al.  The location of transition states: A comparison of Cartesian, Z‐matrix, and natural internal coordinates , 1996 .

[10]  Peter Pulay,et al.  The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces , 1992 .

[11]  D. York,et al.  Linear‐scaling semiempirical quantum calculations for macromolecules , 1996 .

[12]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[13]  Gustavo E. Scuseria,et al.  Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms , 1997 .

[14]  James J. P. Stewart,et al.  Application of localized molecular orbitals to the solution of semiempirical self‐consistent field equations , 1996 .

[15]  Jon Baker,et al.  The generation and use of delocalized internal coordinates in geometry optimization , 1996 .

[16]  Jon Baker,et al.  Geometry optimization in cartesian coordinates: The end of the Z‐matrix? , 1991 .

[17]  Roland Lindh,et al.  Force-constant weighted redundant coordinates in molecular geometry optimizations , 1999 .

[18]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[19]  Ajit Banerjee,et al.  Search for stationary points on surfaces , 1985 .

[20]  Constrained optimization in delocalized internal coordinates , 1997 .

[21]  Tamar Schlick,et al.  A truncated Newton minimizer adapted for CHARMM and biomolecular applications , 1994, J. Comput. Chem..

[22]  Walter Thiel,et al.  Combined Quantum Mechanical and Molecular Mechanical Approaches , 1998 .

[23]  Peter Pulay,et al.  Geometry optimization in redundant internal coordinates , 1992 .

[24]  M. Field,et al.  Quantum mechanical simulation methods for studying biological systems : Les Houches Workshop, May 2-7, 1995 , 1996 .

[25]  S. L. Dixon,et al.  Fast, accurate semiempirical molecular orbital calculations for macromolecules , 1997 .

[26]  R. Fletcher Practical Methods of Optimization , 1988 .

[27]  H. Bernhard Schlegel,et al.  Methods for geometry optimization of large molecules. I. An O(N2) algorithm for solving systems of linear equations for the transformation of coordinates and forces , 1998 .

[28]  K. Merz,et al.  Combined Quantum Mechanical/Molecular Mechanical Methodologies Applied to Biomolecular Systems , 1999 .

[29]  P. Bała,et al.  Quantum Mechanical Simulation Methods for Studying Biological System , 1995 .

[30]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[31]  Arieh Warshel,et al.  Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches , 1993 .

[32]  Jon Baker,et al.  Geometry optimization in delocalized internal coordinates: An efficient quadratically scaling algorithm for large molecules , 1999 .