Existence of Global Strong Solutions to a Beam–Fluid Interaction System

We study an unsteady nonlinear fluid–structure interaction problem which is a simplified model to describe blood flow through viscoelastic arteries. We consider a Newtonian incompressible two-dimensional flow described by the Navier–Stokes equations set in an unknown domain depending on the displacement of a structure, which itself satisfies a linear viscoelastic beam equation. The fluid and the structure are fully coupled via interface conditions prescribing the continuity of the velocities at the fluid–structure interface and the action–reaction principle. We prove that strong solutions to this problem are global-in-time. We obtain, in particular that contact between the viscoelastic wall and the bottom of the fluid cavity does not occur in finite time. To our knowledge, this is the first occurrence of a no-contact result, and of the existence of strong solutions globally in time, in the frame of interactions between a viscous fluid and a deformable structure.

[1]  Céline Grandmont,et al.  Existence et unicité de solutions d'un problème de couplage fluide-structure bidimensionnel stationnaire , 1998 .

[2]  C. Grandmont,et al.  Existence for an Unsteady Fluid-Structure Interaction Problem , 2000 .

[3]  T. Bromwich,et al.  Motion of a Sphere in a Viscous Fluid , 1929, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  Giovanni P. Galdi,et al.  An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems , 2011 .

[5]  Daniel Coutand,et al.  The Interaction between Quasilinear Elastodynamics and the Navier-Stokes Equations , 2006 .

[6]  Céline Grandmont,et al.  Existence for a Three-Dimensional Steady State Fluid-Structure Interaction Problem , 2002 .

[7]  Antonin Chambolle,et al.  Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate , 2005 .

[8]  M. Boulakia Existence of Weak Solutions for the Three-Dimensional Motion of an Elastic Structure in an Incompressible Fluid , 2007 .

[9]  Benoît Desjardins,et al.  Existence of Weak Solutions for the Motion of Rigid Bodies in a Viscous Fluid , 1999 .

[10]  D. Serre,et al.  Chute libre d’un solide dans un fluide visqueux incompressible. existence , 1987 .

[11]  K. Hoffmann,et al.  Zur Bewegung einer Kugel in einer zahen Flussigkeit , 2000 .

[12]  Michael Ruzicka,et al.  Global weak solutions for an incompressible Newtonian fluid interacting with a linearly elastic Koiter shell , 2012, 1207.3696.

[13]  M. Vanninathan,et al.  A fluid–structure model coupling the Navier–Stokes equations and the Lamé system , 2014 .

[14]  Takéo Takahashi,et al.  Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain , 2003, Advances in Differential Equations.

[15]  G. Galdi,et al.  Steady Flow of a Navier–Stokes Liquid Past an Elastic Body , 2009 .

[16]  Julien Lequeurre,et al.  Existence of Strong Solutions to a Fluid-Structure System , 2011, SIAM J. Math. Anal..

[17]  Igor Kukavica,et al.  Well-posedness for the compressible Navier–Stokes–Lamé system with a free interface , 2012 .

[18]  Julien Lequeurre,et al.  Existence of Strong Solutions for a System Coupling the Navier–Stokes Equations and a Damped Wave Equation , 2012, Journal of Mathematical Fluid Mechanics.

[19]  Roland Glowinski,et al.  Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow , 2009, J. Comput. Phys..

[20]  M. Tucsnak,et al.  Global Weak Solutions¶for the Two-Dimensional Motion¶of Several Rigid Bodies¶in an Incompressible Viscous Fluid , 2002 .

[21]  Alfio Quarteroni,et al.  Computational vascular fluid dynamics: problems, models and methods , 2000 .

[22]  V. N. Starovoitov,et al.  ON A MOTION OF A SOLID BODY IN A VISCOUS FLUID. TWO-DIMENSIONAL CASE. , 1999 .

[23]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[24]  H. B. Veiga On the Existence of Strong Solutions to a Coupled Fluid-Structure Evolution Problem , 2004 .

[25]  Takéo Takahashi,et al.  Well posedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid , 2008 .

[26]  A. Quarteroni,et al.  On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels , 2001 .

[27]  Takéo Takahashi,et al.  Blow up and grazing collision in viscous fluid solid interaction systems , 2010 .

[28]  J. A. Bello Lr regularity for the stokes and navier-stokes problems , 1996 .

[29]  Matthieu Hillairet,et al.  Collisions in Three-Dimensional Fluid Structure Interaction Problems , 2009, SIAM J. Math. Anal..

[30]  Muriel Boulakia,et al.  Existence of strong solutions for the motion of an elastic structure in an incompressible viscous fluid , 2012 .

[31]  Eduard Feireisl On the motion of rigid bodies in a viscous incompressible fluid , 2003 .

[32]  D. Gérard-Varet,et al.  COMPUTATION OF THE DRAG FORCE ON A SPHERE CLOSE TO A WALL THE ROUGHNESS ISSUE , 2012 .

[33]  Gerd Grubb,et al.  Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudo-differential methods. , 1991 .

[34]  oris,et al.  Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible , viscous fluid in a cylinder with deformable walls , 2012 .

[35]  D. Lengeler,et al.  Weak Solutions for an Incompressible Newtonian Fluid Interacting with a Koiter Type Shell , 2014 .

[36]  C. Grandmont On an unsteady fluid – beam interaction problem , 2004 .

[37]  David G'erard-Varet,et al.  Computation of the drag force on a rough sphere close to a wall , 2011, 1103.0864.

[38]  Céline Grandmont,et al.  Weak solutions for a fluid-elastic structure interaction model , 2001 .

[39]  Matthieu Hillairet,et al.  Existence of Weak Solutions Up to Collision for Viscous Fluid‐Solid Systems with Slip , 2012, 1207.0469.

[40]  Daniel Coutand,et al.  Motion of an Elastic Solid inside an Incompressible Viscous Fluid , 2005 .

[41]  V. Starovoitov Behavior of a Rigid Body in an Incompressible Viscous Fluid Near a Boundary , 2003 .

[42]  C. Conca,et al.  Motion of a rigid body in a viscous fluid , 1999 .

[43]  Céline Grandmont,et al.  Existence of Weak Solutions for the Unsteady Interaction of a Viscous Fluid with an Elastic Plate , 2005, SIAM J. Math. Anal..

[44]  Marius Tucsnak,et al.  Global Strong Solutions for the Two-Dimensional Motion of an Infinite Cylinder in a Viscous Fluid , 2004 .

[45]  B. Desjardins,et al.  On Weak Solutions for Fluid‐Rigid Structure Interaction: Compressible and Incompressible Models , 1999 .

[46]  David G'erard-Varet,et al.  The influence of boundary conditions on the contact problem in a 3D Navier–Stokes flow , 2013, 1302.7098.

[47]  D. Gérard-Varet,et al.  Regularity Issues in the Problem of Fluid Structure Interaction , 2008, 0805.2654.

[48]  M. Hillairet Lack of Collision Between Solid Bodies in a 2D Incompressible Viscous Flow , 2007 .