The design and fabrication of planar multiband metallodielectric frequency selective surfaces for infrared applications

In this paper, micron-scale frequency selective surfaces (FSS) are presented for the first time that exhibit multiple strong stopbands (>10dB) in the far-infrared (IR). Fractal and genetic algorithm (GA) synthesis techniques are employed in the design of single-layer, multiband IR FSS. These designs have been fabricated on thin, flexible polyimide substrates and characterized using Fourier transform infrared (FTIR) spectroscopy. Measurements show excellent agreement with predictions from a periodic method of moments (PMoM) analysis technique that takes into account metallic and dielectric losses. Additional design constraints were incorporated into the GA in order to guarantee that the synthesized FSS structures could be accurately fabricated.

[1]  R Ulrich,et al.  Interference filters for the far infrared. , 1968, Applied optics.

[2]  K D Möller,et al.  Far-infrared bandpass filters from cross-shaped grids. , 1981, Applied optics.

[3]  Charles M. Rhoads,et al.  Mid-infrared filters using conducting elements. , 1982, Applied optics.

[4]  R. C. Tiberio,et al.  Infrared mesh filters fabricated by electron‐beam lithography , 1985 .

[5]  Kent J. Kogler,et al.  Infrared filters fabricated from submicron loop antenna arrays. , 1988, Applied optics.

[6]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[7]  R. Mittra,et al.  Techniques for analyzing frequency selective surfaces-a review , 1988, Proc. IEEE.

[8]  R. Mittra,et al.  On the analysis of frequency-selective surfaces using subdomain basis functions , 1990 .

[9]  A. Ishimaru Electromagnetic Wave Propagation, Radiation, and Scattering , 1990 .

[10]  Hao Wang,et al.  Introduction to Genetic Algorithms in Electromagnetics , 1995 .

[11]  Eric Michielssen,et al.  Genetic algorithm optimization applied to electromagnetics: a review , 1997 .

[12]  V. Rahmat-Samii,et al.  Genetic algorithms in engineering electromagnetics , 1997 .

[13]  Kai-Ming Ho,et al.  Infrared filters using metallic photonic band gap structures on flexible substrates , 1997 .

[14]  Simon Verghese,et al.  Three-dimensional metallodielectric photonic crystals exhibiting resonant infrared stop bands , 1997 .

[15]  M. Majewski,et al.  Optical properties of metallic films for vertical-cavity optoelectronic devices. , 1998, Applied optics.

[16]  Z. M. Zhang,et al.  Infrared Refractive Index and Extinction Coefficient of Polyimide Films , 1998 .

[17]  Yahya Rahmat-Samii,et al.  Electromagnetic Optimization by Genetic Algorithms , 1999 .

[18]  Dual-band infrared metallodielectric photonic crystal filters , 2000 .

[19]  G D Boreman,et al.  Refractive-index and element-spacing effects on the spectral behavior of infrared frequency-selective surfaces. , 2000, Applied optics.

[20]  Ben A. Munk,et al.  Frequency Selective Surfaces: Theory and Design , 2000 .

[21]  G. Boreman,et al.  Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies , 2000 .

[22]  G. Boreman,et al.  Modeling parameters for the spectral behavior of infrared frequency-selective surfaces. , 2001, Applied optics.

[23]  Infrared frequency selective surfaces fabricated using optical lithography and phase-shift masks , 2001 .

[24]  R. Mittra,et al.  Application of a microgenetic algorithm (MGA) to the design of broadband microwave absorbers using multiple frequency selective surface screens buried in dielectrics , 2002 .

[25]  George M. Whitesides,et al.  Fabrication of frequency-selective surfaces using microlens projection photolithography , 2002 .

[26]  G. Manara,et al.  Synthesis of artificial magnetic conductors by using multilayered frequency selective surfaces , 2002, IEEE Antennas and Wireless Propagation Letters.

[27]  D. Werner,et al.  A genetic algorithm approach to the design of ultra‐thin electromagnetic bandgap absorbers , 2003 .

[28]  D. Werner,et al.  An overview of fractal antenna engineering research , 2003 .

[29]  Y. H. Chen,et al.  Infrared passbands from fractal slit patterns on a metal plate , 2003 .

[30]  R. Marhefka,et al.  Ohmic loss in frequency-selective surfaces , 2003 .

[31]  Milton Rebbert,et al.  Designer infrared filters using stacked metal lattices , 2003 .

[32]  Douglas H. Werner,et al.  Genetically engineered multiband high‐impedance frequency selective surfaces , 2003 .

[33]  D. Werner,et al.  Dual-band infrared single-layer metallodielectric photonic crystals , 2004 .

[34]  Herbert Hein,et al.  Thick capacitive meshes on polyimide substrates , 2004 .

[35]  John L. Volakis,et al.  Frequency‐selective surface based bandpass filters in the near‐infrared region , 2004 .

[36]  D. M. Depoy,et al.  Frequency selective surfaces as near-infrared electromagnetic filters for thermophotovoltaic spectral control , 2004 .

[37]  H. Shigesawa,et al.  Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique , 2004, IEEE Transactions on Antennas and Propagation.

[39]  G. Manara,et al.  Design of waveguide filters by using genetically optimized frequency selective surfaces , 2005, IEEE Microwave and Wireless Components Letters.

[40]  B. Monacelli,et al.  Infrared frequency selective surface based on circuit-analog square loop design , 2005, IEEE Transactions on Antennas and Propagation.

[41]  D.H. Werner,et al.  A novel design methodology for reconfigurable frequency selective surfaces using genetic algorithms , 2005, IEEE Transactions on Antennas and Propagation.

[42]  D. Werner,et al.  The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces , 2005, IEEE Transactions on Antennas and Propagation.

[43]  Chang Wook Ahn,et al.  On the practical genetic algorithms , 2005, GECCO '05.

[44]  Theresa S. Mayer,et al.  Single-layer multiband infrared metallodielectric photonic crystals designed by genetic algorithm optimization , 2005 .