A semi-alternating direction method for a 2-D fractional FitzHugh-Nagumo monodomain model on an approximate irregular domain

A FitzHugh-Nagumo monodomain model has been used to describe the propagation of the electrical potential in heterogeneous cardiac tissue. In this paper, we consider a two-dimensional fractional FitzHugh-Nagumo monodomain model on an irregular domain. The model consists of a coupled Riesz space fractional nonlinear reaction-diffusion model and an ordinary differential equation, describing the ionic fluxes as a function of the membrane potential. Secondly, we use a decoupling technique and focus on solving the Riesz space fractional nonlinear reaction-diffusion model. A novel spatially second-order accurate semi-implicit alternating direction method (SIADM) for this model on an approximate irregular domain is proposed. Thirdly, stability and convergence of the SIADM are proved. Finally, some numerical examples are given to support our theoretical analysis and these numerical techniques are employed to simulate a two-dimensional fractional Fitzhugh-Nagumo model on both an approximate circular and an approximate irregular domain.

[1]  Vicente Grau,et al.  Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization , 2014, Journal of The Royal Society Interface.

[2]  Timothy R. Ginn,et al.  Nonequilibrium statistical mechanics of preasymptotic dispersion , 1994 .

[3]  J. Klafter,et al.  The random walk's guide to anomalous diffusion: a fractional dynamics approach , 2000 .

[4]  Jose Alvarez-Ramirez,et al.  A fractional-order Darcy's law , 2007 .

[5]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[6]  Fawang Liu,et al.  Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation , 2009, Appl. Math. Comput..

[7]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[8]  Wenjun Ying,et al.  A multilevel adaptive approach for computational cardiology , 2005 .

[9]  M. Meerschaert,et al.  Stochastic Models for Fractional Calculus , 2011 .

[10]  Guofei Pang,et al.  Gauss-Jacobi-type quadrature rules for fractional directional integrals , 2013, Comput. Math. Appl..

[11]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[12]  L. M. Pismen Patterns and Interfaces in Dissipative Dynamics , 2009, Encyclopedia of Complexity and Systems Science.

[13]  Mihály Kovács,et al.  Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..

[14]  I. Turner,et al.  A novel numerical approximation for the space fractional advection-dispersion equation , 2014 .

[15]  Fawang Liu,et al.  Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term , 2013 .

[16]  James P. Keener,et al.  Mathematical physiology , 1998 .

[17]  N. Leonenko,et al.  Spectral Analysis of Fractional Kinetic Equations with Random Data , 2001 .

[18]  Fawang Liu,et al.  A second-order accurate numerical approximation for the Riesz space fractional advection-dispersion equation , 2012 .

[19]  Fawang Liu,et al.  An implicit numerical method for the two-dimensional fractional percolation equation , 2013, Appl. Math. Comput..

[20]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[21]  Fawang Liu,et al.  Numerical solution of the space fractional Fokker-Planck equation , 2004 .

[22]  Mihály Kovács,et al.  Fractional Reproduction-Dispersal Equations and Heavy Tail Dispersal Kernels , 2007, Bulletin of mathematical biology.

[23]  Hongguang Sun,et al.  Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. , 2014, Journal of contaminant hydrology.

[24]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[25]  K. Burrage,et al.  Fourier spectral methods for fractional-in-space reaction-diffusion equations , 2014 .

[26]  Wen Chen,et al.  Boundary particle method for Laplace transformed time fractional diffusion equations , 2013, J. Comput. Phys..

[27]  V. Krinsky,et al.  Models of defibrillation of cardiac tissue. , 1998, Chaos.

[28]  I. Podlubny Fractional differential equations , 1998 .

[29]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[30]  Fawang Liu,et al.  A numerical method for the fractional Fitzhugh–Nagumo monodomain model , 2013 .

[31]  Bernie D. Shizgal,et al.  Pseudospectral method of solution of the Fitzhugh-Nagumo equation , 2009, Math. Comput. Simul..

[32]  Kevin Burrage,et al.  Fractional models for the migration of biological cells in complex spatial domains , 2013 .

[33]  D. Benson,et al.  Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications , 2009 .