A (critical) survey of modelling protocols used to explore the conformational space of oligosaccharides

Abstract Computational methods are intensively applied to explore the conformational space of oligosaccharides. In this report, the current modelling protocols for the conformational analysis of carbohydrates are reviewed. Approaches which need direct input of experimental data from NMR experiments (distance mapping and restrained molecular dynamics), various systematic search strategies (uniform rotation, relaxed and adiabatic maps) and random sampling techniques (random molecular mechanics calculations and Metropolis Monte Carlo simulations) are compared. Recently, molecular dynamics simulations have begun to play a dominant role for the conformational analysis of oligosaccharides. Therefore, various commonly used molecular dynamics simulation protocols (e.g. the use of different dielectric constants, simulated annealing and high-temperature simulation protocols, inclusion of explicit solvent molecules, the choice of appropriate non-bonded interaction cut-offs) which are increasingly used to obtain information about all the accessible conformations are discussed in detail.

[1]  Jan Kroon,et al.  Comparison of two force fields by molecular dynamics simulations of glucose crystals: Effect of using ewald sums , 1993, J. Comput. Chem..

[2]  Peter A. Kollman,et al.  Conformational sampling and ensemble generation by molecular dynamics simulations: 18‐Crown‐6 as a test case , 1992 .

[3]  D. Cumming,et al.  Virtual and solution conformations of oligosaccharides. , 1987, Biochemistry.

[4]  J. L. Asensio,et al.  The use of the AMBER force field in conformational analysis of carbohydrate molecules: Determination of the solution conformation of methyl α‐lactoside by NMR spectroscopy, assisted by molecular mechanics and dynamics calculations , 1995, Biopolymers.

[5]  N. L. Allinger,et al.  Hydrogen bonding in MM2 , 1988 .

[6]  Hydroxyl and amido groups as long-range sensors in conformational analysis by nuclear Overhauser enhancement: a source of experimental evidence for conformational flexibility of oligosaccharides , 1989 .

[7]  Serge Pérez,et al.  Conformations of the hydroxymethyl group in crystalline aldohexopyranoses , 1979 .

[8]  B. Meyer,et al.  Konformationsanalyse. XXIV: Bestimmung der Konformationen von Tri- und Tetrasaccharid-Sequenzen der Core-Struktur von N-Glycoproteinen. Problem der (1→6)-glycosidischen Bindung , 1984 .

[9]  J. Brady,et al.  A revised potential-energy surface for molecular mechanics studies of carbohydrates. , 1988, Carbohydrate research.

[10]  John W. Brady,et al.  Molecular dynamics simulations of .alpha.-D-glucose in aqueous solution , 1989 .

[11]  C. W. von der Lieth,et al.  Solution conformations of GM3 gangliosides containing different sialic acid residues as revealed by NOE-based distance mapping, molecular mechanics, and molecular dynamics calculations. , 1992, Biochemistry.

[12]  P. Simpson,et al.  5 nanosecond molecular dynamics and NMR study of conformational transitions in the sialyl-Lewis X antigen. , 1994, Glycobiology.

[13]  K. Koike,et al.  Three-dimensional structure of the oligosaccharide terminus of globotriaosylceramide and isoglobotriaosylceramide in solution. A rotating-frame NOE study using hydroxyl groups as long-range sensors in conformational analysis by 1H-NMR spectroscopy. , 1990, European journal of biochemistry.

[14]  B. Meyer,et al.  A new force-field program for the calculation of glycopeptides and its application to a heptacosapeptide-decasaccharide of immunoglobulin G1. Importance of 1-6-glycosidic linkages in carbohydrate.peptide interactions. , 1990, European journal of biochemistry.

[15]  T. Lentz,et al.  The recognition event between virus and host cell receptor: a target for antiviral agents. , 1990, The Journal of general virology.

[16]  P. V. Balaji,et al.  Molecular dynamics simulations of oligosaccharides and their conformation in the crystal structure of lectin-carbohydrate complex: importance of the torsion angle psi for the orientation of alpha 1,6-arm. , 1994, Glycobiology.

[17]  L. Poppe,et al.  Solution conformation of sialosylcerebroside (GM4) and its NeuAc(α2→3)Galβ sugar component , 1989 .

[18]  G. A. Jeffrey,et al.  A neutron diffraction refinement of the crystal structure of β-maltose monohydrate , 1977 .

[19]  Bernd Meyer,et al.  Further justification for the exo-anomeric effect. Conformational analysis based on nuclear magnetic resonance spectroscopy of oligosaccharides , 1982 .

[20]  S. Homans,et al.  Application of restrained minimization, simulated annealing and molecular dynamics simulations for the conformational analysis of oligosaccharides. , 1992, Glycobiology.

[21]  P A Kollman,et al.  Molecular dynamics studies of a DNA‐binding protein: 2. An evaluation of implicit and explicit solvent models for the molecular dynamics simulation of the Escherichia coli trp repressor , 1992, Protein science : a publication of the Protein Society.

[22]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[23]  B. J. Hardy,et al.  Molecular dynamics simulation of cellobiose in water , 1993, J. Comput. Chem..

[24]  Peter J. Smith,et al.  Polysaccharide conformation. Part IX. Monte Carlo calculation of conformational energies for disaccharides and comparison with experiment , 1975 .

[25]  S. Pérez,et al.  Molecular modelling of protein-carbohydrate interactions. Understanding the specificities of two legume lectins towards oligosaccharides. , 1994, Glycobiology.

[26]  L. Poppe,et al.  Solution conformation of Forssman antigen probed by NOE and exchange interactions. , 1991, Biochemical and biophysical research communications.

[27]  Roger A. Laine,et al.  Invited Commentary: A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 1012 structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems , 1994 .

[28]  C. Bush,et al.  Molecular dynamics simulation of oligosaccharides containing N‐acetyl neuraminic acid , 1994, Biopolymers.

[29]  J. Prestegard,et al.  NMR and computational studies of interactions between remote residues in gangliosides. , 1990, Biochemistry.

[30]  M. Forster,et al.  NOEMOL: integrated molecular graphics and the simulation of Nuclear Overhauser effects in NMR spectroscopy. , 1989, Journal of molecular graphics.

[31]  P. Portoghese,et al.  Molecular modeling of the conformational and sodium ion binding properties of the oligosaccharide component of ganglioside GM1 , 1994, Biopolymers.

[32]  Conformational aspects of oligosaccharides , 1990 .

[33]  T. Rutherford,et al.  Characterization of the extent of internal motions in oligosaccharides. , 1993, Biochemistry.

[34]  Peter J. Smith,et al.  Polysaccharide conformation. Part VIII. Test of energy functions by Monte Carlo calculations for monosaccharides , 1975 .

[35]  J. Brisson,et al.  A Monte Carlo method for conformational analysis of saccharides. , 1993, Carbohydrate Research.

[36]  O Jardetzky,et al.  On the nature of molecular conformations inferred from high-resolution NMR. , 1980, Biochimica et biophysica acta.

[37]  Serge Pérez,et al.  Conformational-energy calculations for oligosaccharides: a comparison of methods and a strategy of calculation☆ , 1986 .

[38]  M. Forster Comparison of compuational methods for simulating nuclear Overhauser effects in NMR spectroscopy , 1991 .

[39]  S. Hakomori Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. , 1990, The Journal of biological chemistry.

[40]  A. French,et al.  Exploration of disaccharide conformations by molecular mechanics , 1993 .

[41]  I. Tvaroska Computational methods for studying oligo- and polysaccharide conformations , 1989 .

[42]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[43]  W. V. van Gunsteren,et al.  Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. , 1990, Journal of molecular biology.

[44]  Owen Johnson,et al.  The development of versions 3 and 4 of the Cambridge Structural Database System , 1991, J. Chem. Inf. Comput. Sci..

[45]  L. Poppe,et al.  Conformation of the glycolipid globoside head group in various solvents and in the micelle-bound state , 1990 .

[46]  K. Tasaki,et al.  Observations concerning the treatment of long‐range interactions in molecular dynamics simulations , 1993, J. Comput. Chem..

[47]  W. V. van Gunsteren,et al.  Conformational differences between alpha-cyclodextrin in aqueous solution and in crystalline form. A molecular dynamics study. , 1988, Journal of molecular biology.

[48]  D. Cumming,et al.  Reevaluation of rotamer populations for 1,6 linkages: reconciliation with potential energy calculations. , 1987, Biochemistry.

[49]  J. Kroon,et al.  Hydrogen-bond geometry around sugar molecules: comparison of crystal statistics with simulated aqueous solutions☆ , 1990 .

[50]  J. Brady,et al.  The role of hydrogen bonding in carbohydrates: molecular dynamics simulations of maltose in aqueous solution , 1993 .

[51]  Norman L. Allinger,et al.  Expanding molecular dynamics simulations to the NMR time scale. I. Studies of conformational interconversions of 1, 1‐difluoro‐4, 4‐dimethylcycloheptane using MM3‐MD , 1994, J. Comput. Chem..

[52]  Kjeld Rasmussen,et al.  Potential energy function for calculation of structures, vibrational spectra and thermodynamic functions of alkanes, alcohols, ethers and carbohydrates , 1979 .

[53]  Improved molecular dynamics simulations for the determination of peptide structures , 1993, Biopolymers.

[54]  P A Kollman,et al.  Are time-averaged restraints necessary for nuclear magnetic resonance refinement? A model study for DNA. , 1991, Journal of molecular biology.

[55]  U. Singh,et al.  500-picosecond molecular dynamics in water of the Man alpha 1----2Man alpha glycosidic linkage present in Asn-linked oligomannose-type structures on glycoproteins. , 1990, Biochemistry.

[56]  P. Grootenhuis,et al.  A CHARMm Based Force Field for Carbohydrates Using the CHEAT Approach: Carbohydrate Hydroxyl Groups Represented by Extended Atoms , 1993 .

[57]  L. Cantu',et al.  Geometrical and conformational properties of ganglioside GalNAc-GD1a, IV4GalNAcIV3Neu5AcII3Neu5AcGgOse4Cer. , 1994, European journal of biochemistry.

[58]  Peter J. Reilly,et al.  Modeling of aldopyranosyl ring puckering with MM3 (92) , 1994 .

[59]  J F Vliegenthart,et al.  Molecular dynamics-derived conformation and intramolecular interaction analysis of the N-acetyl-9-O-acetylneuraminic acid-containing ganglioside GD1a and NMR-based analysis of its binding to a human polyclonal immunoglobulin G fraction with selectivity for O-acetylated sialic acids. , 1996, Glycobiology.

[60]  Jan Kroon,et al.  Solvent effect on the conformation of the hydroxymethyl group established by molecular dynamics simulations of methyl‐β‐D‐glucoside in water , 1990 .

[61]  H. Ahmed,et al.  Letter to the Glyco-Forum: Galections: conservation of functionally and structurally relevant amino acid residues defines two types of carbohydrate recognition domains , 1994 .

[62]  I. Tvaroška,et al.  RAMM-a new procedure for theoretical conformational analysis of carbohydrates , 1990 .

[63]  CARBHYD — ein computergrafisches Interface zur Konstruktion, Wiedergabe und Konformationsberechnung von Poly- und Oligosacchariden , 1989 .

[64]  Homans Sw,et al.  A molecular mechanical force field for the conformational analysis of oligosaccharides: comparison of theoretical and crystal structures of Man alpha 1-3Man beta 1-4GlcNAc. , 1990 .

[65]  Peter A. Kollman,et al.  Conformational and energetic effects of truncating nonbonded interactions in an aqueous protein dynamics simulation , 1993, J. Comput. Chem..

[66]  T. Muramatsu,et al.  Carbohydrate signals in metastasis and prognosis of human carcinomas. , 1993, Glycobiology.

[67]  Domenico Acquotti,et al.  Three-dimensional structure of the oligosaccharide chain of GM1 ganglioside revealed by a distance-mapping procedure: a rotating and laboratory frame nuclear overhauser enhancement investigation of native glycolipid in dimethyl sulfoxide and in water-dodecylphosphocholine solutions , 1990 .