Computing the Conjugacy of Invariant Tori for Volume-Preserving Maps

In this paper we implement a numerical algorithm to compute codimension-one tori in three-dimensional, volume-preserving maps. A torus is defined by its conjugacy to rigid rotation, which is in turn given by its Fourier series. The algorithm employs a quasi-Newton scheme to find the Fourier coefficients of a truncation of the series. We show that this method converges for tori of two example maps by continuation from an integrable case, and discuss the scaling of computational resources required for accurate computations. We demonstrate that the growth of the largest singular value of the derivative of the conjugacy predicts the threshold for the destruction of the torus. We use these singular values to examine the mechanics of the breakup of tori, identifying its onset with the formation of “spires” or “streaks” in the local singular values on the tori. These are analogous to the gaps in cantori of two-dimensional twist maps.

[1]  O. Piro,et al.  Passive scalars, three-dimensional volume-preserving maps, and chaos , 1988 .

[2]  K. Mahler An introduction to Diophantine Approximation. By J. W. S. Cassbls. Cambridge tracts in mathematics and mathematical physics, No. 45. Pp. 166. 22s. 6d. 1957. (Cambridge) , 1959 .

[3]  Julyan H. E. Cartwright,et al.  Chaotic advection in three-dimensional unsteady incompressible laminar flow , 1995, Journal of Fluid Mechanics.

[4]  Julio M. Ottino,et al.  A dynamical systems approach to mixing and segregation of granular materials in tumblers , 2007 .

[5]  R. Llave,et al.  Computation of the Breakdown of Analyticity in Statistical Mechanics Models: Numerical Results and a Renormalization Group Explanation , 2010 .

[6]  A. Thyagaraja,et al.  Representation of volume‐preserving maps induced by solenoidal vector fields , 1985 .

[7]  J. Moser On the Theory of Quasiperiodic Motions , 1966 .

[8]  James D. Meiss,et al.  Critical invariant circles in asymmetric and multiharmonic generalized standard maps , 2013, Commun. Nonlinear Sci. Numer. Simul..

[9]  Chong-Qing Cheng,et al.  Existence of invariant tori in three-dimensional measure-preserving mappings , 1989 .

[10]  Zhihong Xia Existence of invariant tori in volume-preserving diffeomorphisms , 1992, Ergodic Theory and Dynamical Systems.

[11]  Yi-sui Sun,et al.  Chaotic motion of comets in near-parabolic orbit: Mapping approaches , 1994 .

[12]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[13]  R. Llave,et al.  Computation of whiskered invariant tori and their associated manifolds: new fast algorithms , 2010, 1004.5231.

[14]  Adam M. Fox,et al.  Greene’s residue criterion for the breakup of invariant tori of volume-preserving maps , 2012, 1205.6143.

[15]  Ott,et al.  Chaotic flows and magnetic dynamos. , 1988, Physical review letters.

[16]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[17]  R. Llave,et al.  Construction of invariant whiskered tori by a parameterization method. Part I: Maps and flows in finite dimensions , 2009, 0903.0311.

[18]  Kim,et al.  Simultaneous rational approximations in the study of dynamical systems. , 1986, Physical review. A, General physics.

[19]  J. Meiss Thirty years of turnstiles and transport. , 2015, Chaos.

[20]  E. Ott,et al.  Chaotic flows and fast magnetic dynamos , 1988 .

[21]  Jonq Juang,et al.  Chaotic difference equations in two variables and their multidimensional perturbations , 2008 .

[22]  Ian Stewart,et al.  Tales of a Neglected Number , 1996 .

[23]  Uriel Frisch,et al.  Chaotic streamlines in the ABC flows , 1986, Journal of Fluid Mechanics.

[24]  S. Aubry Anti-integrability in dynamic and variational problems , 1995 .

[25]  Àlex Haro,et al.  A Parameterization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity , 2008 .

[26]  Rafael de la Llave,et al.  A numerically accessible criterion for the breakdown of quasi-periodic solutions and its rigorous justification , 2010 .

[27]  Piro,et al.  Diffusion in three-dimensional Liouvillian maps. , 1988, Physical review letters.

[28]  J. Meiss The destruction of tori in volume-preserving maps , 2011, 1103.0050.

[29]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[30]  Stephen Wiggins,et al.  A method for visualization of invariant sets of dynamical systems based on the ergodic partition. , 1999, Chaos.

[31]  James D. Meiss,et al.  Resonances and Twist in Volume-Preserving Mappings , 2010, SIAM J. Appl. Dyn. Syst..