Theoretical foundations for traditional and generalized sensitivity functions for nonlinear delay differential equations.

In this paper we present new results for differentiability of delay systems with respect to initial conditions and delays. After motivating our results with a wide range of delay examples arising in biology applications, we further note the need for sensitivity functions (both traditional and generalized sensitivity functions), especially in control and estimation problems. We summarize general existence and uniqueness results before turning to our main results on differentiation with respect to delays, etc. Finally we discuss use of our results in the context of estimation problems.

[1]  Y. Kuang Delay Differential Equations: With Applications in Population Dynamics , 2012 .

[2]  Jim M Cushing,et al.  Integrodifferential Equations and Delay Models in Population Dynamics. , 1978 .

[3]  S Dediu,et al.  Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. , 2007, Mathematical biosciences and engineering : MBE.

[4]  K. P. Hadeler,et al.  Delay equations in biology , 1979 .

[5]  Harvey Thomas Banks,et al.  Sensitivity of dynamical systems to Banach space parameters , 2006 .

[6]  Harvey Thomas Banks,et al.  Global asymptotic stability of certain models for protein synthesis and repression , 1978 .

[7]  Harvey Thomas Banks,et al.  DELAY SYSTEMS IN BIOLOGICAL MODELS: APPROXIMATION TECHNIQUES , 1977 .

[8]  A. Somolinos,et al.  Forced oscillations for the sunflower equation, entrainment , 1982 .

[9]  Fathalla A. Rihan Sensitivity Analysis of Parameters in Modelling With Delay-Difierential Equations , 1999 .

[10]  Harvey Thomas Banks,et al.  Generalized sensitivities and optimal experimental design , 2010 .

[11]  G. E. Hutchinson,et al.  CIRCULAR CAUSAL SYSTEMS IN ECOLOGY , 1948, Annals of the New York Academy of Sciences.

[12]  H. Banks A Functional Analysis Framework for Modeling, Estimation and Control in Science and Engineering , 2012 .

[13]  N. Macdonald Time lags in biological models , 1978 .

[14]  H. Banks,et al.  Parameter Estimation and Identification for Systems with Delays , 1981 .

[15]  Danielle Robbins,et al.  Sensitivity Functions for Delay Differential Equation Models , 2011 .

[16]  Franz Kappel An Approximation Scheme for Delay Equations. , 1982 .

[17]  E. M. Cliff,et al.  Sensitivity analysis and parameter estimation for a model of Chlamydia Trachomatis infection , 2007 .

[18]  Alfred J. Lotka,et al.  CONTRIBUTION TO THE ANALYSIS OF MALARIA EPIDEMIOLOGY. IV. INCUBATION LAG , 1923 .

[19]  Harvey Thomas Banks,et al.  Dynamic modeling of behavior change in problem drinkers , 2011 .

[20]  H. T. Banks IDENTIFICATION OF NONLINEAR DELAY SYSTEMS USING SPLINE METHODS , 1980 .

[21]  E. M. Wright A non-linear difference-differential equation. , 1946 .

[22]  Stavros Busenberg,et al.  Differential Equations and Applications in Ecology, Epidemics, and Population Problems , 2012 .

[23]  N Minorsky On Non-Linear Phenomenon on Self-Rolling. , 1945, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Urszula Foryś,et al.  Logistic Equations in Tumour Growth Modelling , 2003 .

[25]  Harvey Thomas Banks,et al.  Sensitivity functions and their uses in inverse problems , 2007 .

[26]  B. Goodwin Oscillatory behavior in enzymatic control processes. , 1965, Advances in enzyme regulation.

[27]  Julien Arino,et al.  An alternative formulation for a delayed logistic equation. , 2006, Journal of theoretical biology.

[28]  D M Bortz,et al.  Incorporation of variability into the modeling of viral delays in HIV infection dynamics. , 2003, Mathematical biosciences.

[29]  A. Somolinos,et al.  Periodic solutions of the sunflower equation: +(/)+(/)sin(-)=0 , 1978 .

[30]  Richard Bellman,et al.  Differential-Difference Equations , 1967 .

[31]  W. B. Davis Voles, mice and lemmings , 1942 .

[32]  Fred Brauer,et al.  Age-of-infection and the final size relation. , 2008, Mathematical biosciences and engineering : MBE.

[33]  H T Banks,et al.  A parameter sensitivity methodology in the context of HIV delay equation models , 2005, Journal of mathematical biology.

[34]  J. Hale Theory of Functional Differential Equations , 1977 .

[35]  Franz Kappel,et al.  Comparison of optimal design methods in inverse problems , 2011, Inverse problems.

[36]  Jack K. Hale,et al.  Introduction to Functional Differential Equations , 1993, Applied Mathematical Sciences.

[37]  H. T. Banks,et al.  Time delay systems with distribution dependent dynamics , 2007, Annu. Rev. Control..

[38]  Gerardo Chowell,et al.  Mathematical and statistical estimation approaches in epidemiology , 2009 .

[39]  K. Gopalsamy Stability and Oscillations in Delay Differential Equations of Population Dynamics , 1992 .

[40]  H. Banks,et al.  Hereditary Control Problems: Numerical Methods Based on Averaging Approximations , 1978 .

[41]  Harvey Thomas Banks,et al.  Estimation in time-delay modeling of insecticide-induced mortality , 2009 .

[42]  Claudio Cobelli,et al.  Generalized Sensitivity Functions in Physiological System Identification , 1999, Annals of Biomedical Engineering.

[43]  H. Banks,et al.  Spline approximations for functional differential equations , 1979 .

[44]  B. Goodwin Temporal Organization in Cells; a Dynamic Theory of Cellular Control Processes , 2015 .

[45]  Vincenzo Capasso,et al.  Mathematics in Biology and Medicine , 1985 .

[46]  H. Peitgen,et al.  Functional Differential Equations and Approximation of Fixed Points , 1979 .

[47]  L. Rockwood Introduction to population ecology , 2006 .

[48]  Harvey Thomas Banks,et al.  Necessary Conditions for Control Problems with Variable Time Lags , 1968 .

[49]  Charles C. Elton,et al.  Voles, Mice and Lemmings: Problems in Population Dynamics , 1942 .

[50]  Harvey Thomas Banks,et al.  Representations for solutions of linear functional differential equations , 1969 .

[51]  N. Macdonald,et al.  Time lag in a model of a biochemical reaction sequence with end product inhibition. , 1977, Journal of theoretical biology.

[52]  H. Banks,et al.  Stability of cyclic gene models for systems involving repression. , 1978, Journal of theoretical biology.

[53]  Harvey Thomas Banks,et al.  An Inverse Problem Statistical Methodology Summary , 2007 .

[54]  Urszula Foryś,et al.  Delay logistic equation with diffusion. , 2002 .

[55]  S. G. Kazantsev,et al.  Polynomial bases for subspaces of vector fields in the unit ball. Method of ridge functions , 2007 .

[56]  L. Glass,et al.  PATHOLOGICAL CONDITIONS RESULTING FROM INSTABILITIES IN PHYSIOLOGICAL CONTROL SYSTEMS * , 1979, Annals of the New York Academy of Sciences.

[57]  David M. Pratt,et al.  ANALYSIS OF POPULATION DEVELOPMENT IN DAPHNIA AT DIFFERENT TEMPERATURES , 1943 .

[58]  John Caperon,et al.  Time Lag in Population Growth Response of Isochrysis Galbana to a Variable Nitrate Environment , 1969 .

[59]  F. Kappel Generalized sensitivity analysis in a delay system , 2007 .

[60]  Harvey Thomas Banks Approximation of nonlinear functional differential equation control systems , 1979 .

[61]  F. C. Hoppensteadt,et al.  Mathematical aspects of physiology , 1981 .

[62]  Franz Kappel,et al.  Autonomous nonlinear functional differential equations and averaging approximations , 1978 .

[63]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[64]  Paul L. Errington,et al.  Predation and Vertebrate Populations , 1946, The Quarterly Review of Biology.

[65]  Dennis W. Brewer The Differentiability with Respect to a Parameter of the Solution of a Linear Abstract Cauchy Problem , 1982 .

[66]  J. A. Burns,et al.  An Abstract Framework for Approximate Solutions to Optimal Control Problems Governed by Hereditary Systems , 1975 .

[67]  Lyle G. Clark,et al.  Sensitivity analysis for a class of evolution equations , 1977 .