Tuning transport properties of nanofluidic devices with local charge inversion.

Nanotubes can selectively conduct ions across membranes to make ionic devices with transport characteristics similar to biological ion channels and semiconductor electron devices. Depending on the surface charge profile of the nanopore, ohmic resistors, rectifiers, and diodes can be made. Here we show that a uniformly charged conical nanopore can have all these transport properties by changing the ion species and their concentrations on each side of the membrane. Moreover, the cation versus anion selectivity of the pores can be changed. We find that polyvalent cations like Ca(2+) and the trivalent cobalt sepulchrate produce localized charge inversion to change the effective pore surface charge profile from negative to positive. These effects are reversible so that the transport and selectivity characteristics of ionic devices can be tuned, much as the gate voltage tunes the properties of a semiconductor.

[1]  B. Hille,et al.  Ionic channels of excitable membranes , 2001 .

[2]  D. Gillespie,et al.  Selective Adsorption of Ions with Different Diameter and Valence at Highly Charged Interfaces , 2007 .

[3]  R. Neumann,et al.  Asymmetric selectivity of synthetic conical nanopores probed by reversal potential measurements , 2007 .

[4]  J. Leburton,et al.  p-n Semiconductor membrane for electrically tunable ion current rectification and filtering. , 2007, Nano letters.

[5]  K. Besteman,et al.  Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon. , 2004, Physical review letters.

[6]  C. Vandenberg Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Javier Cervera,et al.  Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. , 2007, The Journal of chemical physics.

[8]  Stephen W. Feldberg,et al.  Current Rectification at Quartz Nanopipet Electrodes , 1997 .

[9]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[10]  G. Robillard,et al.  A biological porin engineered into a molecular, nanofluidic diode. , 2007, Nano letters.

[11]  R. Fleischer,et al.  Nuclear tracks in solids. , 1980, Scientific American.

[12]  S. Bezrukov,et al.  Salting out the ionic selectivity of a wide channel: the asymmetry of OmpF. , 2004, Biophysical journal.

[13]  Andreas Bund,et al.  Ion current rectification at nanopores in glass membranes. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[14]  J. P. Valleau,et al.  Electrical double layers. 4. Limitations of the Gouy-Chapman theory , 1982 .

[15]  Javier Cervera,et al.  Ionic conduction, rectification, and selectivity in single conical nanopores. , 2006, The Journal of chemical physics.

[16]  P. Renaud,et al.  Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. , 2005, Nano letters.

[17]  Alexei A Kornyshev,et al.  Double-layer in ionic liquids: paradigm change? , 2007, The journal of physical chemistry. B.

[18]  P. Renaud,et al.  Transport phenomena in nanofluidics , 2008 .

[19]  R. S. Eisenberg,et al.  Computing the Field in Proteins and Channels , 2010, 1009.2857.

[20]  J. Sweedler,et al.  Fluidic communication between multiple vertically segregated microfluidic channels connected by nanocapillary array membranes , 2008, Electrophoresis.

[21]  S. Bezrukov,et al.  Diffusion, exclusion, and specific binding in a large channel: a study of OmpF selectivity inversion. , 2009, Biophysical journal.

[22]  Katsuhiro Shirono,et al.  Nanofluidic diode and bipolar transistor. , 2005, Nano letters.

[23]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[24]  A. Majumdar,et al.  Electrostatic control of ions and molecules in nanofluidic transistors. , 2005, Nano letters.

[25]  Boris I Shklovskii,et al.  Colloquium: The physics of charge inversion in chemical and biological systems , 2002 .

[26]  Bob Eisenberg,et al.  Living Transistors: a Physicist's View of Ion Channels , 2008 .

[27]  K. Besteman,et al.  Charge inversion at high ionic strength studied by streaming currents. , 2006, Physical review letters.

[28]  C. Dekker,et al.  Surface-charge-governed ion transport in nanofluidic channels. , 2004, Physical review letters.

[29]  Alan P. Morrison,et al.  Transport of ions and biomolecules through single asymmetric nanopores in polymer films , 2005 .

[30]  U. Keyser,et al.  Salt dependence of ion transport and DNA translocation through solid-state nanopores. , 2006, Nano letters.

[31]  P Hänggi,et al.  Rectification in synthetic conical nanopores: a one-dimensional Poisson-Nernst-Planck model. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  C. Lorenz,et al.  Charge inversion of divalent ionic solutions in silica channels. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  R. Eisenberg Atomic Biology, Electrostatics, and Ionic Channels , 2008, 0807.0715.

[34]  Z. Siwy,et al.  Ion‐Current Rectification in Nanopores and Nanotubes with Broken Symmetry , 2006 .

[35]  Zuzanna Siwy,et al.  Ionic selectivity of single nanochannels. , 2008, Nano letters.

[36]  Zhonghua Ni,et al.  Electroosmotic flow in nanotubes with high surface charge densities. , 2008, Nano letters.

[37]  A. Majumdar,et al.  Polarity switching and transient responses in single nanotube nanofluidic transistors. , 2005, Physical review letters.

[38]  M. Morad,et al.  Modulation of cardiac ion channels by magnesium. , 1991, Annual review of physiology.

[39]  K. Besteman,et al.  Charge inversion by multivalent ions: dependence on dielectric constant and surface-charge density. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  S. Bezrukov,et al.  Residue ionization and ion transport through OmpF channels. , 2003, Biophysical journal.

[41]  D. Gillespie,et al.  Simulating prescribed particle densities in the grand canonical ensemble using iterative algorithms. , 2008, The Journal of chemical physics.

[42]  A. Majumdar,et al.  Rectification of ionic current in a nanofluidic diode. , 2007, Nano letters.

[43]  Z. Siwy,et al.  Conical-nanotube ion-current rectifiers: the role of surface charge. , 2004, Journal of the American Chemical Society.

[44]  J. Valleau,et al.  Primitive model electrolytes. I. Grand canonical Monte Carlo computations , 1980 .

[45]  Jonathan V Sweedler,et al.  Nanofluidics and the role of nanocapillary array membranes in mass-limited chemical analysis. , 2006, The Analyst.

[46]  I. Kosinska,et al.  Transport properties of nanopores in electrolyte solutions: the diffusional model and surface currents , 2005 .

[47]  S. Bruzzone,et al.  Solvation thermodynamics of alkali and halide ions in ionic liquids through integral equations. , 2008, The Journal of chemical physics.

[48]  C. Trautmann,et al.  Ion transport through asymmetric nanopores prepared by ion track etching , 2003 .

[49]  Arun Majumdar,et al.  Ion transport in nanofluidic channels , 2004 .

[50]  M. H. Battey Nuclear Tracks in Solids (Principles and Applications) , 1976 .

[51]  Zuzanna Siwy,et al.  Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. , 2008, ACS nano.

[52]  B. Sakmann,et al.  Single-Channel Recording , 1995, Springer US.

[53]  B. Shklovskii WIGNER CRYSTAL MODEL OF COUNTERION INDUCED BUNDLE FORMATION OF RODLIKE POLYELECTROLYTES , 1998, cond-mat/9809429.

[54]  Reimar Spohr,et al.  Diode-like single-ion track membrane prepared by electro-stopping , 2001 .

[55]  D. Gillespie Energetics of divalent selectivity in a calcium channel: the ryanodine receptor case study. , 2008, Biophysical journal.

[56]  K. Healy,et al.  Modifying the surface charge of single track-etched conical nanopores in polyimide , 2008, Nanotechnology.

[57]  Matsuhiko Nishizawa,et al.  Metal Nanotubule Membranes with Electrochemically Switchable Ion-Transport Selectivity , 1995, Science.

[58]  M. Gilson,et al.  Ions and inhibitors in the binding site of HIV protease: comparison of Monte Carlo simulations and the linearized Poisson-Boltzmann theory. , 2009, Biophysical journal.

[59]  L. Guo,et al.  Rectified ion transport through concentration gradient in homogeneous silica nanochannels. , 2007, Nano letters.

[60]  B. Eisenberg Engineering channels: Atomic biology , 2008, Proceedings of the National Academy of Sciences.

[61]  R. Eisenberg,et al.  Nanoprecipitation-assisted ion current oscillations. , 2008, Nature nanotechnology.

[62]  B. Eisenberg,et al.  Binding and selectivity in L-type calcium channels: a mean spherical approximation. , 2000, Biophysical journal.